Optical polarization singularities and elliptic stationary points

被引:96
作者
Soskin, MS
Denisenko, V
Freund, I
机构
[1] Natl Acad Sci Ukraine, Inst Phys, UA-03650 Kiev 28, Ukraine
[2] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1364/OL.28.001475
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polarization singularities and elliptic stationary points (collectively, elliptic critical points) were measured experimentally via the complex Stokes field S-1 + iS(2), where S-1 and S-2 are Stokes parameters. This new, easily implemented method yielded detailed, high-resolution experimental data for all elliptic critical points. These data confirm with high precision the elliptic-field topological sign rule, loop rules, and Stokes singularity relations introduced recently. (C) 2003 Optical Society of America.
引用
收藏
页码:1475 / 1477
页数:3
相关论文
共 14 条
[1]   The relationship between topological characteristics of component vortices and polarization singularities [J].
Angelsky, O ;
Mokhun, A ;
Mokhun, I ;
Soskin, M .
OPTICS COMMUNICATIONS, 2002, 207 (1-6) :57-65
[2]  
Angelsky OV, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.036602
[3]  
Born M., 1959, PRINCIPLES OPTICS
[4]   Elliptic critical points in paraxial optical fields [J].
Freund, I ;
Soskin, MS ;
Mokhun, AI .
OPTICS COMMUNICATIONS, 2002, 208 (4-6) :223-253
[5]   Stokes singularity relations [J].
Freund, I ;
Mokhun, AI ;
Soskin, MS ;
Angelsky, OV ;
Mokhun, II .
OPTICS LETTERS, 2002, 27 (07) :545-547
[6]   Poincare vortices [J].
Freund, I .
OPTICS LETTERS, 2001, 26 (24) :1996-1998
[7]   '1001' correlations in random wave fields [J].
Freund, I .
WAVES IN RANDOM MEDIA, 1998, 8 (01) :119-158
[8]   SADDLES, SINGULARITIES, AND EXTREMA IN RANDOM-PHASE FIELDS [J].
FREUND, I .
PHYSICAL REVIEW E, 1995, 52 (03) :2348-2360
[9]   COMPOUND MODULATED SCATTERER MEASURING SYSTEM [J].
HAJNAL, JV .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1987, 134 (04) :350-356
[10]   SINGULARITIES IN THE TRANSVERSE FIELDS OF ELECTROMAGNETIC-WAVES .2. OBSERVATIONS ON THE ELECTRIC-FIELD [J].
HAJNAL, JV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1847) :447-468