Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma

被引:703
作者
Ladd, Jon [1 ]
Zhang, Zheng [1 ]
Chen, Shengfu [1 ]
Hower, Jason C. [1 ]
Jiang, Shaoyi [1 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
关键词
D O I
10.1021/bm701301s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.
引用
收藏
页码:1357 / 1361
页数:5
相关论文
共 32 条
[1]   Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry [J].
Adkins, JN ;
Varnum, SM ;
Auberry, KJ ;
Moore, RJ ;
Angell, NH ;
Smith, RD ;
Springer, DL ;
Pounds, JG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (12) :947-955
[2]   Protein adsorption to oligo(ethylene glycol) self-assembled monolayers: Experiments with fibrinogen, heparinized plasma, and serum [J].
Benesch, J ;
Svedhem, S ;
Svensson, SCT ;
Valiokas, R ;
Liedberg, B ;
Tengvall, P .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2001, 12 (06) :581-597
[3]   Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials [J].
Brash, JL .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (11) :1135-1146
[4]   Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines [J].
Chang, Y ;
Chen, SF ;
Zhang, Z ;
Jiang, SY .
LANGMUIR, 2006, 22 (05) :2222-2226
[5]   Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials [J].
Chen, SF ;
Zheng, J ;
Li, LY ;
Jiang, SY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (41) :14473-14478
[6]   Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption [J].
Chen, Shengfu ;
Yu, Fuchen ;
Yu, Qiuming ;
He, Yi ;
Jiang, Shaoyi .
LANGMUIR, 2006, 22 (19) :8186-8191
[7]   A COMPARISON OF THE ADSORPTION OF 3 ADHESIVE PROTEINS TO BIOMATERIAL SURFACES [J].
FABRIZIUSHOMAN, DJ ;
COOPER, SL .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1991, 3 (01) :27-47
[8]  
HARRIS J, 1992, PROCEEDINGS OF THE SIXTH NORTH AMERICAN CRANE WORKSHOP, P1
[9]   Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer [J].
Holmlin, RE ;
Chen, XX ;
Chapman, RG ;
Takayama, S ;
Whitesides, GM .
LANGMUIR, 2001, 17 (09) :2841-2850
[10]   PROTEIN SURFACE INTERACTIONS IN THE PRESENCE OF POLYETHYLENE OXIDE .1. SIMPLIFIED THEORY [J].
JEON, SI ;
LEE, JH ;
ANDRADE, JD ;
DEGENNES, PG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1991, 142 (01) :149-158