The analysis of multigrid algorithms for cell centered finite difference methods

被引:19
作者
Bramble, JH
Ewing, RE
Pasciak, JE
Shen, J
机构
[1] TEXAS A&M UNIV, DEPT MATH, COLLEGE STN, TX 77843 USA
[2] BROOKHAVEN NATL LAB, DEPT APPL SCI, UPTON, NY 11973 USA
[3] TEXAS A&M UNIV, INST COMP SCI, COLLEGE STN, TX 77843 USA
关键词
D O I
10.1007/BF02124733
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine multigrid algorithms for cell centered finite difference approximations of second order elliptic boundary value problems. The cell centered application gives rise to one of the simplest non-variational multigrid algorithms. We shall provide an analysis which guarantees that the W-cycle and variable V-cycle multigrid algorithms converge with a rate of iterative convergence which can be bounded independently of the number of multilevel spaces. In contrast, the natural variational multigrid algorithm converges much more slowly.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 14 条
[1]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[2]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[3]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[4]   NEW ESTIMATES FOR MULTILEVEL ALGORITHMS INCLUDING THE V-CYCLE [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1993, 60 (202) :447-471
[5]   THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :467-488
[6]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P23, DOI 10.1090/S0025-5718-1991-1079008-4
[7]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[8]  
EWING R, 1993, NASA C PUBLICATION, V3224
[9]   LOCAL REFINEMENT TECHNIQUES FOR ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS .1. ERROR ANALYSIS [J].
EWING, RE ;
LAZAROV, RD ;
VASSILEVSKI, PS .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :437-461
[10]  
FEDORENKO RP, 1961, USSR COMP MATH MATH, P1092