A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres

被引:332
作者
Fang, Xiaoliang
Chen, Cheng
Liu, Zhaohui
Liu, Pengxin
Zheng, Nanfeng [1 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
关键词
DRUG-DELIVERY; TEMPLATE SYNTHESIS; CONTROLLED-RELEASE; PARTICLES; NANOPARTICLES; SHELL; MICROSPHERES; ROUTE; NANOSTRUCTURES; MICROCAPSULES;
D O I
10.1039/c0nr00893a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective "cationic surfactant assisted selective etching" synthetic strategy was developed for the preparation of high-quality hollow mesoporous silica spheres with either wormhole-like or oriented mesoporous shell. The as-prepared hollow mesoporous silica spheres have large surface area, high pore volume, and controllable structure parameters. Our experiments demonstrated that cationic surfactant plays critical roles in forming the hollow mesoporous structure. A formation mechanism involving the etching of solid SiO2 accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell.
引用
收藏
页码:1632 / 1639
页数:8
相关论文
共 39 条
[1]   Meslostructured silica supports for functional materials and molecular machines [J].
Angelos, Sarah ;
Johansson, Erik ;
Stoddart, J. Fraser ;
Zink, Jeffrey I. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (14) :2261-2271
[2]   Aerosol generated mesoporous silica particles [J].
Baccile, N ;
Grosso, D ;
Sanchez, C .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (12) :3011-3016
[3]   Elaboration of Monodisperse Spherical Hollow Particles with Ordered Mesoporous Silica Shells via Dual Latex/Surfactant Templating: Radial Orientation of Mesopore Channels [J].
Blas, Helene ;
Save, Maud ;
Pasetto, Pamela ;
Boissiere, Cedric ;
Sanchez, Clement ;
Charleux, Bernadette .
LANGMUIR, 2008, 24 (22) :13132-13137
[4]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[5]   Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy [J].
Chen, Yu ;
Chen, Hangrong ;
Guo, Limin ;
He, Qianjun ;
Chen, Feng ;
Zhou, Jian ;
Feng, Jingwei ;
Shi, Jianlin .
ACS NANO, 2010, 4 (01) :529-539
[6]   Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J].
Deng, Yonghui ;
Qi, Dawei ;
Deng, Chunhui ;
Zhang, Xiangmin ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :28-+
[7]   Controlled-Access Hollow Mechanized Silica Nanocontainers [J].
Du, Li ;
Liao, Shijun ;
Khatib, Hussam A. ;
Stoddart, J. Fraser ;
Zink, Jeffrey I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (42) :15136-15142
[8]   A facile route to hollow nanospheres of mesoporous silica with tunable size [J].
Feng, Zhange ;
Li, Yongsheng ;
Niu, Dechao ;
Li, Liang ;
Zhao, Wenru ;
Chen, Hangrong ;
Li, Lei ;
Gao, Jianhua ;
Ruan, Meiling ;
Shi, Jianlin .
CHEMICAL COMMUNICATIONS, 2008, (23) :2629-2631
[9]   Interfacial synthesis of hollow microspheres of mesostructured silica [J].
Fowler, CE ;
Khushalani, D ;
Mann, S .
CHEMICAL COMMUNICATIONS, 2001, (19) :2028-2029
[10]   Carbon nanotubes encapsulated in wormlike hollow silica shells [J].
Grzelczak, Marek ;
Correa-Duarte, Miguel A. ;
Liz-Marzan, Luis M. .
SMALL, 2006, 2 (10) :1174-1177