Embedded density functional theory for covalently bonded and strongly interacting subsystems

被引:85
作者
Goodpaster, Jason D. [1 ]
Barnes, Taylor A. [1 ]
Miller, Thomas F., III [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
EXCHANGE-CORRELATION POTENTIALS; ELECTRONIC-STRUCTURE CALCULATIONS; KINETIC-ENERGY FUNCTIONALS; AB-INITIO; BASIS-SETS; SOLIDS; IMPLEMENTATION; APPROXIMATION; FORMULATION; ALGORITHM;
D O I
10.1063/1.3582913
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the nonadditive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociation of Li+-Be, CH3-CF3, and hydrogen-bonded water clusters, and e-DFT results obtained using the EE method are compared with those obtained using approximate kinetic energy functionals. In all cases, the EE method preserves excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures. We also demonstrate an accurate pairwise approximation to the NAKP that allows for efficient parallelization of the EE method in large systems; benchmark calculations on molecular crystals reveal ideal, size-independent scaling of wall-clock time with increasing system size. (c) 2011 American Institute of Physics. [doi:10.1063/1.3582913]
引用
收藏
页数:9
相关论文
共 64 条
[21]   A DIVIDE-AND-CONQUER ALGORITHM FOR THE SYMMETRICAL TRIDIAGONAL EIGENPROBLEM [J].
GU, M ;
EISENSTAT, SC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (01) :172-191
[22]   A NEW FORMULATION OF THE HARTREE-FOCK-ROOTHAAN METHOD FOR ELECTRONIC-STRUCTURE CALCULATIONS ON CRYSTALS [J].
HAMMES-SCHIFFER, S ;
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (01) :375-393
[23]   Development and assessment of new exchange-correlation functionals [J].
Hamprecht, FA ;
Cohen, AJ ;
Tozer, DJ ;
Handy, NC .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (15) :6264-6271
[24]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS [J].
HEHRE, WJ ;
STEWART, RF ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (06) :2657-+
[25]   Density functional embedding for molecular systems [J].
Iannuzzi, M ;
Kirchner, B ;
Hutter, J .
CHEMICAL PHYSICS LETTERS, 2006, 421 (1-3) :16-20
[26]   A subsystem density-functional theory approach for the quantum chemical treatment of proteins [J].
Jacob, Christoph R. ;
Visscher, Lucas .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15)
[27]   Software news and update a flexible implementation of frozen-density embedding for use in multilevel Simulations [J].
Jacob, Christoph R. ;
Neugebauer, Johannes ;
Visscher, Lucas .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (06) :1011-1018
[28]   Polarization consistent basis sets: Principles [J].
Jensen, F .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (20) :9113-9125
[29]   Models for the treatment of crystalline solids and surfaces [J].
Jug, K ;
Bredow, T .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (13) :1551-1567
[30]   Modeling Solvatochromic Shifts Using the Orbital-Free Embedding Potential at Statistically Mechanically Averaged Solvent Density [J].
Kaminski, Jakub W. ;
Gusarov, Sergey ;
Wesolowski, Tomasz A. ;
Kovalenko, Andriy .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (20) :6082-6096