A DIVIDE-AND-CONQUER ALGORITHM FOR THE SYMMETRICAL TRIDIAGONAL EIGENPROBLEM

被引:147
作者
GU, M
EISENSTAT, SC
机构
[1] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
[2] YALE UNIV,DEPT COMP SCI,NEW HAVEN,CT 06520
关键词
SYMMETRICAL TRIDIAGONAL EIGENPROBLEM; DIVIDE-AND-CONQUER; ARROWHEAD MATRIX;
D O I
10.1137/S0895479892241287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present a stable and efficient divide-and-conquer algorithm for computing the spectral decomposition of an N x N symmetric tridiagonal matrix. The key elements are a new, stable method for finding the spectral decomposition of a symmetric arrowhead matrix and a new implementation of deflation. Numerical results show that this algorithm is competitive with bisection with inverse iteration, Cuppen's divide-and-conquer algorithm, and the QR algorithm for solving the symmetric tridiagonal eigenproblem.
引用
收藏
页码:172 / 191
页数:20
相关论文
共 30 条
[1]  
ADAMS L, 1991, 918 U WASH DEP APPL
[2]  
Anderson E., 1992, LAPACK USERS GUIDE
[3]   QR-LIKE ALGORITHMS FOR SYMMETRICAL ARROW MATRICES [J].
ARBENZ, P ;
GOLUB, GH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (02) :655-658
[4]   DIVIDE-AND-CONQUER ALGORITHMS FOR THE BANDSYMMETRIC EIGENVALUE PROBLEM [J].
ARBENZ, P .
PARALLEL COMPUTING, 1992, 18 (10) :1105-1128
[5]   ERROR ANALYSIS OF UPDATE METHODS FOR THE SYMMETRICAL EIGENVALUE PROBLEM [J].
BARLOW, JL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) :598-618
[6]  
BOLEY D, 1977, LECT NOTES MATH, V630, P23
[7]  
BORGES CF, 1993, NUMERICAL LINEAR ALG, P10
[8]   HANDBOOK SERIES LINEAR ALGEBRA - QR AND QL ALGORITHMS FOR SYMMETRIC MATRICES [J].
BOWDLER, H ;
MARTIN, RS ;
REINSCH, C ;
WILKINSO.JH .
NUMERISCHE MATHEMATIK, 1968, 11 (04) :293-&
[9]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[10]   A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS [J].
CARRIER, J ;
GREENGARD, L ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :669-686