Bound states of the Klein-Gordon equation with n-dimensional scalar and vector hydrogen atom-type potentials

被引:23
作者
Chen, CY [1 ]
Liu, CL [1 ]
Lu, FL [1 ]
Sun, DS [1 ]
机构
[1] Yancheng Teachers Coll, Dept Phys, Yancheng 224002, Peoples R China
关键词
n-dimensional hydrogen atom-type potential; Klein-Gordon equation; bound states; exact solutions;
D O I
10.7498/aps.52.1579
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Characteristics of the bound states of Klein-Gordon equation with n-dimensional scalar and vector hydrogen atom-type potentials have been studied, the exact solutions of bound states are obtained. The exact energy expressions and the normalized analytically wave functions for bound states are presented. Two recurrence formulas and some explicit expressions for lower power radial average values are also derived.
引用
收藏
页码:1579 / 1584
页数:6
相关论文
共 36 条
[11]  
HU SH, 1996, J FUDAN U NATURAL SC, V35, P578
[12]  
Hu Si-Zhu, 1991, Acta Physica Sinica, V40, P1201
[13]  
Hu Sizhu, 1998, Journal of Fudan University (Natural Science), V37, P713
[14]  
LANDAU LD, 1979, QUANTUM MECH NONRELA, P36
[15]   Four kinds of raising and lowering operators of n-dimensional hydrogen atom and isotropic harmonic oscillator [J].
Liu, YF ;
Zeng, JY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10) :1110-1115
[16]   Factorization of the radial Schrodinger equation and four kinds of raising and lowering operators of hydrogen atoms and isotropic harmonic oscillators [J].
Liu, YF ;
Lei, YA ;
Zeng, JY .
PHYSICS LETTERS A, 1997, 231 (1-2) :9-22
[17]   BOUND-STATES OF A RELATIVISTIC QUARK CONFINED BY A VECTOR POTENTIAL [J].
LONG, C ;
ROBSON, D .
PHYSICAL REVIEW D, 1983, 27 (03) :644-646
[18]  
NI GJ, 2000, ADV QUANTUM MECH, pCH9
[19]   HYDROGEN-ATOM AND RELATIVISTIC PI-MESIC ATOM IN N-SPACE DIMENSIONS [J].
NIETO, MM .
AMERICAN JOURNAL OF PHYSICS, 1979, 47 (12) :1067-1072
[20]   SUPERSYMMETRY ASPECTS OF THE DIRAC-EQUATION IN ONE DIMENSION WITH A LORENTZ SCALAR POTENTIAL [J].
NOGAMI, Y ;
TOYAMA, FM .
PHYSICAL REVIEW A, 1993, 47 (03) :1708-1714