A posteriori error estimation for the finite element method-of-lines solution of parabolic problems

被引:32
作者
Adjerid, S [1 ]
Flaherty, JE
Babuska, I
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
[2] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA
[4] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
关键词
D O I
10.1142/S0218202599000142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Babuska and Yu constructed a posteriori estimates for finite element discretization errors of linear elliptic problems utilizing a dichotomy principal stating that the errors of odd-order approximations arise near element edges as mesh spacing decreases while those of even-order approximations arise in element interiors. We construct similar a posteriori estimates for the spatial errors of finite element method-of-lines solutions of linear parabolic partial differential equations on square-element meshes. Error estimates computed in this manner are proven to be asymptotically correct; thus, they converge in strain energy under mesh refinement at the same rate as the actual errors.
引用
收藏
页码:261 / 286
页数:26
相关论文
共 30 条
[1]   A POSTERIORI ERROR ESTIMATION WITH FINITE-ELEMENT METHODS OF LINES FOR ONE-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE ;
WANG, YJ .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :1-21
[2]   A MOVING-MESH FINITE-ELEMENT METHOD WITH LOCAL REFINEMENT FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 55 (1-2) :3-26
[3]  
ADJERID S, IN PRESS SIAM J SCI
[4]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[5]   The influence and selection of subspaces for a posteriori error estimators [J].
Ainsworth, M .
NUMERISCHE MATHEMATIK, 1996, 73 (04) :399-418
[6]  
[Anonymous], 1983, Adaptive computational methods for partial differential equations
[7]  
[Anonymous], 828637 SAND NAT LAB
[8]  
Babuska I., 1980, Computational Methods in Nonlinear Mechanics. Proceedings of the TICOM Second International Conference, P67
[9]  
Babuska I., 1994, Finite Elements in Analysis and Design, V17, P273, DOI 10.1016/0168-874X(94)90003-5
[10]  
BABUSKA I, 1993, BN115 U MAR COLL PAR