The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type

被引:16
作者
Ezquerro, JA [1 ]
Gutierrez, JM [1 ]
Hernandez, MA [1 ]
Salanova, MA [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
nonlinear equations; multipoint iterations; convergence theorem; recurrence relations; a priori error bounds;
D O I
10.1016/S0898-1221(98)00137-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse-free Jarratt-type approximation, whose order of convergence is four, for solving nonlinear equations. The convergence of this method is analysed under two different types of conditions.; We use a new technique based on constructing a system of real sequences. Finally, this method is applied to the study of Hammerstein's integral equations. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 14 条
[1]  
ARYROS IK, 1996, J APPR TH APPL, V12, P19
[2]   RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .1. THE HALLEY METHOD [J].
CANDELA, V ;
MARQUINA, A .
COMPUTING, 1990, 44 (02) :169-184
[3]   ANALYTIC SOLUTIONS FOR THE FINITE-DIFFERENCE TIME-DOMAIN AND TRANSMISSION-LINE-MATRIX METHODS [J].
CHEN, ZZ ;
SILVESTER, PP .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (01) :5-8
[4]   A family of Chebyshev-Halley type methods in Banach spaces [J].
Gutierrez, JM ;
Hernandez, MA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (01) :113-130
[5]  
Hernandez Veron M. A., 1991, Numerische Mathematik, V59, P273, DOI 10.1007/BF01385780
[6]  
Kantorovich L.V., 1951, DOKL AKAD NAUK SSSR, V76, P17
[7]  
Ostrowski A., 1973, Solution of Equations in Euclidean and Banach Spaces
[8]  
POTRA FA, 1984, NANDISCRETE INDUCTIO
[9]  
Rall LB, 1979, Computational solution of nonlinear operator equations
[10]  
Traub J. F., 1982, ITERATIVE METHODS SO