A family of Chebyshev-Halley type methods in Banach spaces

被引:207
作者
Gutierrez, JM [1 ]
Hernandez, MA [1 ]
机构
[1] UNIV LA RIOJA,DPT MAT & COMPUTAC,LOGRONO 26004,SPAIN
关键词
D O I
10.1017/S0004972700030586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of third-order iterative processes (that includes Chebyshev and Halley's methods) is studied in Banach spaces. Results on convergence and uniqueness of solution are given, as well as error estimates. This study allows us to compare the most famous third-order iterative processes.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 20 条
[1]   ON THE CONVERGENCE OF HALLEYS METHOD [J].
ALEFELD, G .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07) :530-536
[2]  
ALTMAN M, 1961, B ACAD POL SCI SM, V9, P633
[3]  
Argyros I., 1993, PROYECCIONES, V12, P119, DOI [10.22199/S07160917.1993.0002.00002, DOI 10.22199/S07160917.1993.0002.00002]
[4]   RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .1. THE HALLEY METHOD [J].
CANDELA, V ;
MARQUINA, A .
COMPUTING, 1990, 44 (02) :169-184
[5]   RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .2. THE CHEBYSHEV METHOD [J].
CANDELA, V ;
MARQUINA, A .
COMPUTING, 1990, 45 (04) :355-367
[6]   A NOTE ON THE HALLEY METHOD IN BANACH-SPACES [J].
CHEN, D ;
ARGYROS, IK ;
QIAN, QS .
APPLIED MATHEMATICS AND COMPUTATION, 1993, 58 (2-3) :215-224
[7]   A LOCAL CONVERGENCE THEOREM FOR THE SUPER-HALLEY METHOD IN A BANACH-SPACE [J].
CHEN, D ;
ARGYROS, IK ;
QIAN, Q .
APPLIED MATHEMATICS LETTERS, 1994, 7 (05) :49-52
[8]  
Chen D., 1993, COMMENT MATH U CAROL, V34, P153
[9]  
Doring B., 1970, Aplikace Matematiky, V15, P418
[10]   ON HALLEY ITERATION METHOD [J].
GANDER, W .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :131-134