Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

被引:130
作者
Brown, Steven D. [1 ,2 ]
Guss, Adam M. [1 ,2 ,3 ]
Karpinets, Tatiana V. [1 ,2 ]
Parks, Jerry M. [1 ,2 ]
Smolin, Nikolai [1 ]
Yang, Shihui [1 ,2 ]
Land, Miriam L. [1 ,2 ]
Klingeman, Dawn M. [1 ,2 ]
Bhandiwad, Ashwini [2 ,3 ]
Rodriguez, Miguel, Jr. [1 ,2 ]
Raman, Babu [1 ,2 ]
Shao, Xiongjun [2 ,3 ]
Mielenz, Jonathan R. [1 ,2 ]
Smith, Jeremy C. [1 ,2 ,4 ]
Keller, Martin [1 ]
Lynd, Lee R. [2 ,3 ]
机构
[1] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA
[3] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[4] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA
关键词
bioenergy; genomics; inhibitor; resequencing; 454; PROTEIN HOMOLOGY DETECTION; MOLECULAR-DYNAMICS METHOD; PARTICLE MESH EWALD; THERMOPHILIC BACTERIA; ZYMOMONAS-MOBILIS; STRUCTURE VALIDATION; PREDICTION; STRAINS; THERMOHYDROSULFURICUM; SIMULATION;
D O I
10.1073/pnas.1102444108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene ( adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.
引用
收藏
页码:13752 / 13757
页数:6
相关论文
共 58 条
[1]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[2]   Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? [J].
Alper, Hal ;
Stephanopoulos, Gregory .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (10) :715-723
[3]   Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli [J].
Atsumi, Shota ;
Wu, Tung-Yun ;
Machado, Iara M. P. ;
Huang, Wei-Chih ;
Chen, Pao-Yang ;
Pellegrini, Matteo ;
Liao, James C. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[4]   Empirical force fields for biologically active divalent metal cations in water [J].
Babu, CS ;
Lim, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (02) :691-699
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   The MPI Bioinformatics toolkit for protein sequence analysis [J].
Biegert, Andreas ;
Mayer, Christian ;
Remmert, Michael ;
Soeding, Johannes ;
Lupas, Andrei N. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W335-W339
[8]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[9]   PURIFICATION OF ACETALDEHYDE DEHYDROGENASE AND ALCOHOL DEHYDROGENASES FROM THERMOANAEROBACTER-ETHANOLICUS 39E AND CHARACTERIZATION OF THE SECONDARY-ALCOHOL DEHYDROGENASE (2-DEGREES ADH) AS A BIFUNCTIONAL ALCOHOL-DEHYDROGENASE ACETYL-COA REDUCTIVE THIOESTERASE [J].
BURDETTE, D ;
ZEIKUS, JG .
BIOCHEMICAL JOURNAL, 1994, 302 :163-170
[10]  
Carugo O, 1997, PROTEINS, V28, P10, DOI 10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.3.CO