Logarithmic negativity: A full entanglement monotone that is not convex

被引:1091
作者
Plenio, MB
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
关键词
D O I
10.1103/PhysRevLett.95.090503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proven that logarithmic negativity does not increase on average under a general positive partial transpose preserving operation (a set of operations that incorporate local operations and classical communication as a subset) and, in the process, a further proof is provided that the negativity does not increase on average under the same set of operations. Given that the logarithmic negativity is not a convex function this result is surprising, as it is generally considered that convexity describes the local physical process of losing information. The role of convexity and, in particular, its relation (or lack thereof) to physical processes is discussed and importance of continuity in this context is stressed.
引用
收藏
页数:4
相关论文
共 43 条
[1]   Entanglement cost under positive-partial-transpose-preserving operations - art. no. 0279015 [J].
Audenaert, K ;
Plenio, MB ;
Eisert, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[2]   Asymptotic relative entropy of entanglement for orthogonally invariant states [J].
Audenaert, K ;
De Moor, B ;
Vollbrecht, KGH ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 66 (03) :323101-323111
[3]   Asymptotic relative entropy of entanglement -: art. no. 217902 [J].
Audenaert, K ;
Eisert, J ;
Jané, E ;
Plenio, MB ;
Virmani, S ;
De Moor, B .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :217902-1
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[6]  
Bhatia R., 2013, MATRIX ANAL
[7]   Squashed entanglement: An additive entanglement measure [J].
Christandl, M ;
Winter, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :829-840
[8]   The uniqueness theorem for entanglement measures [J].
Donald, MJ ;
Horodecki, M ;
Rudolph, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4252-4272
[9]   INTRODUCTION TO THE BASICS OF ENTANGLEMENT THEORY IN CONTINUOUS-VARIABLE SYSTEMS [J].
Eisert, J. ;
Plenio, M. B. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :479-506
[10]   A comparison of entanglement measures [J].
Eisert, J ;
Plenio, MB .
JOURNAL OF MODERN OPTICS, 1999, 46 (01) :145-154