Coherent control of pulsed X-ray beams

被引:59
作者
DeCamp, MF [1 ]
Reis, DA
Bucksbaum, PH
Adams, B
Caraher, JM
Clarke, R
Conover, CWS
Dufresne, EM
Merlin, R
Stoica, V
Wahlstrand, JK
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, FOCUS Ctr, Ann Arbor, MI 48109 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Colby Coll, Waterville, ME 04901 USA
关键词
D O I
10.1038/35101560
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synchrotrons produce continuous trains of closely spaced X-ray pulses. Application of such sources to the study of atomic-scale motion requires efficient modulation of these beams on timescales ranging from nanoseconds to femtoseconds. However, ultrafast X-ray modulators are not generally available. Here we report efficient subnanosecond coherent switching of synchrotron beams by using acoustic pulses in a crystal to modulate the anomalous low-loss transmission of X-ray pulses. The acoustic excitation transfers energy between two X-ray beams in a time shorter than the synchrotron pulse width of about 100 ps. Gigahertz modulation of the diffracted X-rays is also observed. We report different geometric arrangements, such as a switch based on the collision of two counter-propagating acoustic pulses: this doubles the X-ray modulation frequency, and also provides a means of observing a localized transient strain inside an opaque material. We expect that these techniques could be scaled to produce subpicosecond pulses, through laser-generated coherent optical phonon modulation of X-ray diffraction in crystals. Such ultrafast capabilities have been demonstrated thus far only in laser-generated X-ray sources, or through the use of X-ray streak cameras(1-6).
引用
收藏
页码:825 / 828
页数:4
相关论文
共 22 条
[1]  
Akhmanov S. A., 1992, Soviet Physics - Uspekhi, V35, P153, DOI 10.1070/PU1992v035n03ABEH002221
[2]   PICOSECOND ELLIPSOMETRY OF TRANSIENT ELECTRON-HOLE PLASMAS IN GERMANIUM [J].
AUSTON, DH ;
SHANK, CV .
PHYSICAL REVIEW LETTERS, 1974, 32 (20) :1120-1123
[3]  
Authier A., 1996, X-ray and Neutron Dynamical Diffraction Theory and Applications
[4]   DYNAMICAL DIFFRACTION OF X RAYS BY PERFECT CRYSTALS [J].
BATTERMAN, BW ;
COLE, H .
REVIEWS OF MODERN PHYSICS, 1964, 36 (03) :681-&
[5]  
BORRMANN G, 1956, Z NATURFORSCH PT A, V11, P585
[6]   X-RAY-DIFFRACTION STUDIES OF ACOUSTOELECTRICALLY AMPLIFIED PHONONS [J].
CHAPMAN, LD ;
COLELLA, R ;
BRAY, R .
PHYSICAL REVIEW B, 1983, 27 (04) :2264-2277
[7]  
Entin I. R., 1978, Soviet Physics - Solid State, V20, P754
[8]   OBSERVATION OF AN X-RAY SHUTTERING MECHANISM UTILIZING ACOUSTIC INTERRUPTION OF BORRMANN EFFECT [J].
HAUER, A ;
BURNS, SJ .
APPLIED PHYSICS LETTERS, 1975, 27 (10) :524-526
[9]   ULTRAFAST X-RAY SOURCES [J].
KIEFFER, JC ;
CHAKER, M ;
MATTE, JP ;
PEPIN, H ;
COTE, CY ;
BEAUDOIN, Y ;
JOHNSTON, TW ;
CHIEN, CY ;
COE, S ;
MOUROU, G ;
PEYRUSSE, O .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (07) :2676-2681
[10]   Ultrafast x-ray diffraction using a streak-camera detector in averaging mode [J].
Larsson, J ;
Chang, Z ;
Judd, E ;
Schuck, PJ ;
Falcone, RW ;
Heimann, PA ;
Padmore, HA ;
Kapteyn, HC ;
Bucksbaum, PH ;
Murnane, MM ;
Lee, RW ;
Machacek, A ;
Wark, JS ;
Liu, X ;
Shan, B .
OPTICS LETTERS, 1997, 22 (13) :1012-1014