Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery

被引:86
作者
Younesi, S. Reza [1 ]
Urbonaite, Sigita [1 ]
Bjorefors, Fredrik [1 ]
Edstrom, Kristina [1 ]
机构
[1] Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden
关键词
Lithium-oxygen; Air electrode; Porosity; Cathode formulation; LI-AIR BATTERIES; NONAQUEOUS ELECTROLYTES; OPTIMIZATION;
D O I
10.1016/j.jpowsour.2011.07.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By varying the ratio between the amount of carbon and Kynar binder in the cathode of a lithium-oxygen battery, it could be shown that an increasing amount of binder resulted in a decrease in the discharge capacity, mainly as a result of the decrease in the cathode porosity. It was shown that the Kynar binder blocked the majority of the pores with a width below 300 angstrom as determined by studying the pore volume and pore size distribution by nitrogen adsorption. Three carbonate based electrolytes (PC, PC:DEC (1:1), and EC:DEC (2:1) with 1 M LiPF6) were tested with the various cathode film compositions. Generally, the PC:DEC and EC:DEC based electrolytes provided higher capacities than PC. The results indicated that the air electrode composition and its effect on the porosity of the cathode, as well as electrolyte properties, are important when optimizing the discharge capacity. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9835 / 9838
页数:4
相关论文
共 31 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[3]   Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1370-1374
[4]   An O2 cathode for rechargeable lithium batteries:: The effect of a catalyst [J].
Debart, Aurelie ;
Bao, Jianli ;
Armstrong, Graham ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1177-1182
[5]   High Capacity Li-O2 Cell and Electrochemical Impedance Spectroscopy Study [J].
Eswaran, M. ;
Munichandraiah, N. ;
Scanlon, L. G. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (09) :A121-A124
[6]   Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Peng, Zhangquan ;
Griffin, John M. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Novak, Petr ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) :8040-8047
[7]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[8]   Review on Li-air batteries-Opportunities, limitations and perspective [J].
Kraytsberg, Alexander ;
Ein-Eli, Yair .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :886-893
[9]   Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte [J].
Kuboki, T ;
Okuyama, T ;
Ohsaki, T ;
Takami, N .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :766-769
[10]  
Lan C.J., 2008, ECS T, V42, P51