Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis

被引:26
作者
Albinsky, Doris [2 ,3 ]
Sawada, Yuji [2 ,3 ]
Kuwahara, Ayuko [2 ,3 ]
Nagano, Mutsumi [2 ,3 ]
Hirai, Akiko [2 ,3 ]
Saito, Kazuki [2 ,4 ]
Hirai, Masami Yokota [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] RIKEN Plant Sci Ctr, Tsurumi Ku, Kanagawa 2300045, Japan
[3] CREST, JST, Kawaguchi, Saitama 3320012, Japan
[4] Chiba Univ, Grad Sch Pharmaceut Sci, Inage Ku, Chiba 2638522, Japan
基金
日本科学技术振兴机构;
关键词
Glucosinolate biosynthesis; Widely targeted metabolomics; Batch-learning self-organising map (BL-SOM); Side-chain elongation; Leucine biosynthesis; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTORS; SECONDARY METABOLISM; COORDINATED CONTROL; INSECT RESISTANCE; IDENTIFICATION; CYP83B1; AUXIN; CYTOCHROME-P450; EXPRESSION;
D O I
10.1007/s00726-010-0681-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amino acid and glucosinolate biosynthesis are two interdependent pathways; amino acid synthesis as a part of primary metabolism provides the precursors for glucosinolate biosynthesis in secondary metabolism. In our previous studies, the combination of coexpression analysis and metabolite profiling led to the identification of genes and key regulators involved in glucosinolate biosynthesis. Moreover, the integration of transcriptome and metabolome data of sulphur-deprived Arabidopsis plants revealed coordinate changes in the expression profiles of genes involved in glucosinolate and amino acid metabolism. This review provides an overview of our recent studies involving Arabidopsis mutant plants that exhibit impairment in the side-chain elongation process occurring during aliphatic glucosinolate biosynthesis by means of coexpression analysis and a novel metabolite profiling approach based on ultra-performance liquid chromatography coupled with tandem quadrupole mass spectrometry (UPLC-TQMS) (Sawada et al. 2009a). Thus, this review highlights the advantages of the omics-based approach in identifying genes involved in glucosinolate biosynthesis.
引用
收藏
页码:1067 / 1075
页数:9
相关论文
共 63 条
[1]   Approaches for extracting practical information from gene co-expression networks in plant biology [J].
Aoki, Koh ;
Ogata, Yoshiyuki ;
Shibata, Daisuke .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (03) :381-390
[2]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[3]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118
[4]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824
[5]   The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis [J].
Beekwilder, Jules ;
van Leeuwen, Wessel ;
van Dam, Nicole M. ;
Bertossi, Monica ;
Grandi, Valentina ;
Mizzi, Luca ;
Soloviev, Mikhail ;
Szabados, Laszlo ;
Molthoff, Jos W. ;
Schipper, Bert ;
Verbocht, Hans ;
de Vos, Ric C. H. ;
Morandini, Piero ;
Aarts, Mark G. M. ;
Bovy, Arnaud .
PLOS ONE, 2008, 3 (04)
[6]   Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J].
Brown, PD ;
Tokuhisa, JG ;
Reichelt, M ;
Gershenzon, J .
PHYTOCHEMISTRY, 2003, 62 (03) :471-481
[7]   CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis [J].
Chen, SX ;
Glawischnig, E ;
Jorgensen, K ;
Naur, P ;
Jorgensen, B ;
Olsen, CE ;
Hansen, CH ;
Rasmussen, H ;
Pickett, JA ;
Halkier, BA .
PLANT JOURNAL, 2003, 33 (05) :923-937
[8]   Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling [J].
Cho, Kyoungwon ;
Shibato, Junko ;
Agrawal, Ganesh Kumar ;
Jung, Young-Ho ;
Kubo, Akihiro ;
Jwa, Nam-Soo ;
Tamogami, Shigeru ;
Satoh, Kouji ;
Kikuchi, Shoshi ;
Higashi, Tetsuji ;
Kimura, Shinzo ;
Saji, Hikaru ;
Tanaka, Yoshihide ;
Iwahashi, Hitoshi ;
Masuo, Yoshinori ;
Rakwal, Randeep .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (07) :2980-2998
[9]   Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis [J].
Ehlting, J. ;
Provart, N. J. ;
Werck-Reichhart, D. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :1192-1198
[10]   An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana [J].
Ehlting, Juergen ;
Sauveplane, Vincent ;
Olry, Alexandre ;
Ginglinger, Jean-Francois ;
Provart, Nicholas J. ;
Werck-Reichhart, Daniele .
BMC PLANT BIOLOGY, 2008, 8 (1)