Suitability of drift nonlinearity in Si, GaAs, and InP for high-power frequency converters with a 1 THz radiation output

被引:25
作者
Brazis, R
Raguotis, R
Siegrist, MR
机构
[1] Inst Semicond Phys, LT-2600 Vilnius, Lithuania
[2] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, PPB Ecublens, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1063/1.368522
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the nonlinear drift response of electrons in Si, GaAs, and InP crystals to high-power electromagnetic waves by means of a Monte Carlo technique, with the aim of developing an efficient frequency converter for 1 THz output radiation. Drift velocity amplitudes and phases determining the conversion efficiency are calculated for the first, third, and fifth harmonics in the pumping wave amplitude range of 10 < E-1 < 100 kV/cm, for frequencies between 30 and 500 GHz, and at the lattice temperatures of 80, 300, and 400 K. It is found that the efficiency is a maximum at the pumping wave amplitude of the order of 10 kV/cm depending on the intervalley electron scattering parameters and the lattice temperature. Cooling the nonlinear crystal down to the liquid-nitrogen temperature enhances the efficiency several times in Si and by orders of magnitude in GaAs and InP. This is promising for obtaining a 10% conversion efficiency. (C) 1998 American Institute of Physics. [S0021-8979(98)00919-0].
引用
收藏
页码:3474 / 3482
页数:9
相关论文
共 23 条
[1]  
AMBRAZEVICIENE V, 1991, NONLINEAR SURFACE EL, pCH6
[2]   ION TEMPERATURE-MEASUREMENT OF TOKAMAK PLASMAS BY COLLECTIVE THOMSON SCATTERING OF D2O LASER-RADIATION [J].
BEHN, R ;
DICKEN, D ;
HACKMANN, J ;
SALITO, SA ;
SIEGRIST, MR ;
KRUG, PA ;
KJELBERG, I ;
DUVAL, B ;
JOYE, B ;
POCHELON, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (24) :2833-2836
[3]   Negative dynamic mobility of electrons in silicon in the far-infrared range [J].
Brazis, R ;
Asadauskas, L ;
Raguotis, R ;
Siegrist, MR .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1997, 18 (06) :1217-1222
[4]  
BRAZIS RS, 1983, SOV PHYS SEMICOND+, V17, P450
[5]   HIGH-FIELD TRANSPORT IN GAAS, INP AND INAS [J].
BRENNAN, K ;
HESS, K .
SOLID-STATE ELECTRONICS, 1984, 27 (04) :347-357
[6]   DIFFUSION-COEFFICIENT OF ELECTRONS IN SILICON [J].
BRUNETTI, R ;
JACOBONI, C ;
NAVA, F ;
REGGIANI, L ;
BOSMAN, G ;
ZIJLSTRA, RJJ .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (11) :6713-6722
[7]   ELECTRON-DRIFT VELOCITY VERSUS ELECTRIC-FIELD IN GAAS [J].
CHANG, CS ;
FETTERMAN, HR .
SOLID-STATE ELECTRONICS, 1986, 29 (12) :1295-1296
[8]  
DARGYS A, 1994, HDB PHYSICAL PROPERT, P266
[9]   ELECTRON-DRIFT VELOCITY IN GAAS USING A VARIABLE FREQUENCY MICROWAVE TIME-OF-FLIGHT TECHNIQUE [J].
HILL, G ;
ROBSON, PN .
SOLID-STATE ELECTRONICS, 1982, 25 (07) :589-597
[10]  
Jacoboni C., 1989, The Monte Carlo method for semiconductor device simulation, V1st, DOI DOI 10.1007/978-3-7091-6963-6