A bitline leakage compensation scheme for low-voltage SRAMs

被引:53
作者
Agawa, K [1 ]
Hara, H
Takayanagi, T
Kuroda, T
机构
[1] Toshiba Co Ltd, Syst LSI Res & Dev Ctr, Kawasaki, Kanagawa 2128520, Japan
[2] Keio Univ, Dept Elect Engn, Yokohama, Kanagawa 2238522, Japan
关键词
bitline leakage currents; CMOS analog integrated circuits; compensation scheme; leak detection; low-voltage operation; SRAM chips;
D O I
10.1109/4.918909
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A bitline leakage current of an SRAM, induced by leakage current of the transmission transistors in the cells that are associated with the bitline, increases as the threshold voltage (V-TH) of the transistors is reduced for high performance at low power-supply voltage (V-DD), The increased bitline leakage causes slow or incorrect read/write operation of an SRAM because the leakage current acts as noise current for a sense amplifier. In this paper, the problem has been solved from a circuitry point of view, and the scheme which detects the bitline leakage current in a precharge cycle and compensates for it during a read/write cycle is proposed. Employing this scheme, the SRAM with 360-muA bitline leakage current can perform a read/write operation at the same speed as one that has no bitline leakage current, This enables a 0.1-V reduction in V-TH, and keeps the V-TH and delay scalability of a high-performance SRAM in technology progress. An experimental 8-kb SRAM with 256 rows is fabricated in a 0.25-mum CMOS technology, which demonstrates the effectiveness of the scheme.
引用
收藏
页码:726 / 734
页数:9
相关论文
共 10 条
[1]   A bit-line leakage compensation scheme for low-voltage SRAM's [J].
Agawa, K ;
Hara, H ;
Takayanagi, T ;
Kuroda, T .
2000 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2000, :70-71
[2]  
[Anonymous], S VLSI TECHN HON HI
[3]  
DAVARI B, 1999, S VLSI CIRC, P5
[4]   A 1-V TFT-LOAD SRAM USING A 2-STEP WORD-VOLTAGE METHOD [J].
ISHIBASHI, K ;
TAKASUGI, K ;
YAMANAKA, T ;
HASHIMOTO, T ;
SASAKI, K .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1992, 27 (11) :1519-1524
[5]   A 0.9-V, 150-MHz, 10-mW, 4 mm(2), 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme [J].
Kuroda, T ;
Fujita, T ;
Mita, S ;
Nagamatsu, T ;
Yoshioka, S ;
Suzuki, K ;
Sano, F ;
Norishima, M ;
Murota, M ;
Kako, M ;
Kinugawa, M ;
Kakumu, M ;
Sakurai, T .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1996, 31 (11) :1770-1779
[6]   Driving source-line cell architecture for sub-1-V high-speed low-power applications [J].
Mizuno, H ;
Nagano, T .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1996, 31 (04) :552-557
[7]  
NISHIKAWA T, 2000, IEEE INT SOL STAT CI, P230
[8]  
RAAM FM, 1999, ISSCC FEB, P258
[9]   A microprocessor with a 128-bit CPU, ten floating-point MAC's, four floating-point dividers, and an MPEG-2 decoder [J].
Suzuoki, M ;
Kutaragi, K ;
Hiroi, T ;
Magoshi, K ;
Okamoto, S ;
Oka, M ;
Ohba, A ;
Yanamoto, Y ;
Furuhashi, M ;
Tanaka, M ;
Yutaka, T ;
Okada, T ;
Nagamatsu, M ;
Urakawa, Y ;
Funyu, M ;
Kunimatsu, A ;
Goto, H ;
Hashimoto, K ;
Ide, N ;
Murakami, H ;
Ohtaguro, Y ;
Aono, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1999, 34 (11) :1608-1618
[10]   A precise on-chip voltage generator for a gigascale DRAM with a negative word-line scheme [J].
Tanaka, H ;
Aoki, M ;
Sakata, T ;
Kimura, S ;
Sakashita, N ;
Hidaka, H ;
Tachibana, T ;
Kimura, K .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1999, 34 (08) :1084-1090