Computer-assisted detection of infectious lung diseases: A review

被引:64
作者
Bagci, Ulas [1 ]
Bray, Mike [2 ]
Caban, Jesus [3 ]
Yao, Jianhua [4 ]
Mollura, Daniel J. [1 ]
机构
[1] NIH, Ctr Infect Dis Imaging, Dept Radiol & Imaging Sci, Bethesda, MD 20892 USA
[2] NIAID, NIH, Bethesda, MD 20892 USA
[3] NIH, Natl Lib Med, Bethesda, MD 20892 USA
[4] NIH, Dept Radiol & Imaging Sci, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Infectious diseases; Computer assisted detection; Texture analysis; Lung CT; Feature extraction; Tomography; HIGH-RESOLUTION CT; ARTIFICIAL NEURAL-NETWORK; IMAGE FEATURE ANALYSIS; GROUND-GLASS OPACITY; AIDED DIAGNOSIS; CHEST RADIOGRAPHS; TEXTURE CLASSIFICATION; INTERSTITIAL DISEASE; DIGITAL RADIOGRAPHY; PULMONARY NODULES;
D O I
10.1016/j.compmedimag.2011.06.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Respiratory tract infections are a leading cause of death and disability worldwide. Although radiology serves as a primary diagnostic method for assessing respiratory tract infections, visual analysis of chest radiographs and computed tomography (CT) scans is restricted by low specificity for causal infectious organisms and a limited capacity to assess severity and predict patient outcomes. These limitations suggest that computer-assisted detection (CAD) could make a valuable contribution to the management of respiratory tract infections by assisting in the early recognition of pulmonary parenchymal lesions, providing quantitative measures of disease severity and assessing the response to therapy. In this paper, we review the most common radiographic and CT features of respiratory tract infections, discuss the challenges of defining and measuring these disorders with CAD, and propose some strategies to address these challenges. Published by Elsevier Ltd.
引用
收藏
页码:72 / 84
页数:13
相关论文
共 125 条
[71]   Cost-effectiveness in radiology [J].
Lipton, MJ ;
Metz, CE .
EUROPEAN RADIOLOGY, 2000, 10 (Suppl 3) :S390-S392
[72]   Current role of positron emission tomography in thoracic oncology [J].
Lowe, VJ ;
Naunheim, KS .
THORAX, 1998, 53 (08) :703-712
[73]  
Lucaya J, 2007, PEDIAT CHEST IMAGING
[74]   The meaning of diagnostic test results: A spreadsheet for swift data analysis [J].
Maceneaney, PM ;
Malone, DE .
CLINICAL RADIOLOGY, 2000, 55 (03) :227-235
[75]   Computer-aided diagnosis of pulmonary nodules: Results of a large-scale observer test [J].
MacMahon, H ;
Engelmann, R ;
Behlen, FM ;
Hoffmann, KR ;
Ishida, T ;
Roe, C ;
Metz, CE ;
Doi, K .
RADIOLOGY, 1999, 213 (03) :723-726
[76]   Texture features for browsing and retrieval of image data [J].
Manjunath, BS ;
Ma, WY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (08) :837-842
[77]   Locally rotation, contrast, and scale invariant descriptors for texture analysis [J].
Mellor, Matthew ;
Hong, Byung-Woo ;
Brady, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (01) :52-61
[78]   Proper binormal ROC curves: Theory and maximum-likelihood estimation [J].
Metz, CE ;
Pan, XC .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1999, 43 (01) :1-33
[79]  
METZ CE, 1986, INVEST RADIOL, V21, P720, DOI 10.1097/00004424-198609000-00009
[80]   Imaging Findings in a Fatal Case of Pandemic Swine-Origin Influenza A (H1N1) [J].
Mollura, Daniel J. ;
Asnis, Deborah S. ;
Crupi, Robert S. ;
Conetta, Rick ;
Feigin, David S. ;
Bray, Mike ;
Taubenberger, Jeffery K. ;
Bluemke, David A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (06) :1500-1503