Effect of doping concentration on the performance of terahertz quantum-cascade lasers -: art. no. 141102

被引:67
作者
Liu, HC [1 ]
Wächter, M
Ban, D
Wasilewski, ZR
Buchanan, M
Aers, GC
Cao, JC
Feng, SL
Williams, BS
Hu, Q
机构
[1] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家航空航天局; 中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1063/1.2067699
中图分类号
O59 [应用物理学];
学科分类号
摘要
We characterized a set of terahertz quantum-cascade lasers with identical device parameters except for the doping concentration. The delta-doping density was varied from 3.2x10(10) to 4.8x10(10) cm(-2). We observed that the threshold current density increased monotonically with doping. Moreover, the measured results on devices with different cavity lengths provided evidence that the free carrier absorption caused waveguide loss also increased monotonically. Interestingly, however, the observed maximum lasing temperature displayed an optimum at a doping density of 3.6x10(10) cm(-2). (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 13 条
[1]   2.9 THz quantum cascade lasers operating up to 70 K in continuous wave [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Fowler, J ;
Linfield, EH ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1674-1676
[2]   Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers [J].
Callebaut, H ;
Kumar, S ;
Williams, BS ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :645-647
[3]   Lasing properties of GaAs/(Al,Ga)As quantum-cascade lasers as a function of injector doping density [J].
Giehler, M ;
Hey, R ;
Kostial, H ;
Cronenberg, S ;
Ohtsuka, T ;
Schrottke, L ;
Grahn, HT .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :671-673
[4]   Self-consistent scattering model of carrier dynamics in GaAs-AlGaAs terahertz quantum-cascade lasers [J].
Indjin, D ;
Harrison, P ;
Kelsall, RW ;
Ikonic, Z .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (01) :15-17
[5]   Nature of charge transport in quantum-cascade lasers [J].
Iotti, RC ;
Rossi, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :146603/1-146603/4
[6]   Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators [J].
Kohen, S ;
Williams, BS ;
Hu, Q .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (05)
[7]   High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Dhillon, SS ;
Sirtori, C .
APPLIED PHYSICS LETTERS, 2003, 82 (10) :1518-1520
[8]   Terahertz semiconductor-heterostructure laser [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Iotti, RC ;
Rossi, F .
NATURE, 2002, 417 (6885) :156-159
[9]   Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature [J].
Kumar, S ;
Williams, BS ;
Kohen, S ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2004, 84 (14) :2494-2496
[10]   Low-threshold terahertz quantum-cascade lasers [J].
Rochat, M ;
Ajili, L ;
Willenberg, H ;
Faist, J ;
Beere, H ;
Davies, G ;
Linfield, E ;
Ritchie, D .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1381-1383