International research networks in viral structural proteomics: Again, lessons from SARS

被引:5
作者
Canard, Bruno [2 ,3 ]
Joseph, Jeremiah S. [1 ]
Kuhn, Peter [1 ]
机构
[1] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[2] Univ Aix Marseille 1, CNRS, Architecture & Fonct Macromol Biol UMR 6098, F-13288 Marseille 9, France
[3] Univ Aix Marseille 2, F-13288 Marseille 9, France
关键词
SARS-CoV; infectious diseases; structural genomics; FSPS; VIZIER;
D O I
10.1016/j.antiviral.2007.09.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Emerging and re-emerging pathogens and bioterror threats require an organized and coherent response from the worldwide research community to maximize available resources and competencies with the primary goals to understand the pathogen and enable intervention. In 2001, the Structural Proteomics In Europe (SPINE) project prototyped the pan-viral structural genomic approach, and the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003 accelerated the concept of structural characterization of all proteins from a viral proteome and the interaction with their host partners. Following that approach, in 2004 the center for Functional and Structural Proteomics for SARS-CoV related proteins was initiated as part of the US NIH NIAID proteomics resource centers. Across worldwide efforts in Asia, Europe and America, the international research teams working on SARS-CoV have now determined expefimental structural information for 45% of the SARS-CoV proteins and 53% of all its soluble proteins. This data is fully available to the scientific community and is providing an unprecedented level of insight to this class of RNA viruses. The efforts and results by the international scientific community to the SARS outbreak are serving as an example and roadmap of a rapid response using modem research methods. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 50
页数:4
相关论文
共 28 条
[1]   Novel β-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus [J].
Almeida, Marcius S. ;
Johnson, Margaret A. ;
Herrmann, Torsten ;
Geralt, Michael ;
Wuthrich, Kurt .
JOURNAL OF VIROLOGY, 2007, 81 (07) :3151-3161
[2]   Coronavirus main proteinase (3CLpro) structure:: Basis for design of anti-SARS drugs [J].
Anand, K ;
Ziebuhr, J ;
Wadhwani, P ;
Mesters, JR ;
Hilgenfeld, R .
SCIENCE, 2003, 300 (5626) :1763-1767
[3]   Remedial strategies in structural proteomics: Expression, purification, and crystallization of the Vav1/Rac1 complex [J].
Brooun, Alexei ;
Foster, Scott A. ;
Chrencik, Jill E. ;
Chien, Ellen Y. T. ;
Kolatkar, Anand R. ;
Streiff, Markus ;
Ramage, Paul ;
Widmer, Hans ;
Weckbecker, Gisbert ;
Kuhn, Peter .
PROTEIN EXPRESSION AND PURIFICATION, 2007, 53 (01) :51-62
[4]   Structural genomics of the SARS coronavirus:: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein [J].
Campanacci, V ;
Egloff, MP ;
Longhi, S ;
Ferron, F ;
Rancurel, C ;
Salomoni, A ;
Durousseau, C ;
Tocque, F ;
Brémond, N ;
Dobbe, JC ;
Snijder, EJ ;
Canard, B ;
Cambillau, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2003, 59 :1628-1631
[5]   A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus [J].
Imbert, Isabelle ;
Guillemot, Jean-Claude ;
Bourhis, Jean-Marie ;
Bussetta, Cecile ;
Coutard, Bruno ;
Egloff, Marie-Pierre ;
Ferron, Francois ;
Gorbalenya, Alexander E. ;
Canard, Bruno .
EMBO JOURNAL, 2006, 25 (20) :4933-4942
[6]   Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch [J].
Joseph, Jeremiah S. ;
Saikatendu, Kumar Singh ;
Subramanian, Vanitha ;
Neuman, Benjamin W. ;
Buchmeier, Michael J. ;
Stevens, Raymond C. ;
Kuhn, Peter .
JOURNAL OF VIROLOGY, 2007, 81 (12) :6700-6708
[7]   Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs [J].
Joseph, Jeremiah S. ;
Saikatendu, Kumar Singh ;
Subramanian, Vanitha ;
Neuman, Benjamin W. ;
Brooun, Alexei ;
Griffith, Mark ;
Moy, Kin ;
Yadav, Maneesh K. ;
Velasquez, Jeffrey ;
Buchmeier, Michael J. ;
Stevens, Raymond C. ;
Kuhn, Peter .
JOURNAL OF VIROLOGY, 2006, 80 (16) :7894-7901
[8]   Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline [J].
Lesley, SA ;
Kuhn, P ;
Godzik, A ;
Deacon, AM ;
Mathews, I ;
Kreusch, A ;
Spraggon, G ;
Klock, HE ;
McMullan, D ;
Shin, T ;
Vincent, J ;
Robb, A ;
Brinen, LS ;
Miller, MD ;
McPhillips, TM ;
Miller, MA ;
Scheibe, D ;
Canaves, JM ;
Guda, C ;
Jaroszewski, L ;
Selby, TL ;
Elsliger, MA ;
Wooley, J ;
Taylor, SS ;
Hodgson, KO ;
Wilson, IA ;
Schultz, PG ;
Stevens, RC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11664-11669
[9]   Structure of SARS coronavirus spike receptor-binding domain complexed with receptor [J].
Li, F ;
Li, WH ;
Farzan, M ;
Harrison, SC .
SCIENCE, 2005, 309 (5742) :1864-1868
[10]   The genome sequence of the SARS-associated coronavirus [J].
Marra, MA ;
Jones, SJM ;
Astell, CR ;
Holt, RA ;
Brooks-Wilson, A ;
Butterfield, YSN ;
Khattra, J ;
Asano, JK ;
Barber, SA ;
Chan, SY ;
Cloutier, A ;
Coughlin, SM ;
Freeman, D ;
Girn, N ;
Griffith, OL ;
Leach, SR ;
Mayo, M ;
McDonald, H ;
Montgomery, SB ;
Pandoh, PK ;
Petrescu, AS ;
Robertson, AG ;
Schein, JE ;
Siddiqui, A ;
Smailus, DE ;
Stott, JE ;
Yang, GS ;
Plummer, F ;
Andonov, A ;
Artsob, H ;
Bastien, N ;
Bernard, K ;
Booth, TF ;
Bowness, D ;
Czub, M ;
Drebot, M ;
Fernando, L ;
Flick, R ;
Garbutt, M ;
Gray, M ;
Grolla, A ;
Jones, S ;
Feldmann, H ;
Meyers, A ;
Kabani, A ;
Li, Y ;
Normand, S ;
Stroher, U ;
Tipples, GA ;
Tyler, S .
SCIENCE, 2003, 300 (5624) :1399-1404