Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline

被引:354
作者
Lesley, SA
Kuhn, P
Godzik, A
Deacon, AM
Mathews, I
Kreusch, A
Spraggon, G
Klock, HE
McMullan, D
Shin, T
Vincent, J
Robb, A
Brinen, LS
Miller, MD
McPhillips, TM
Miller, MA
Scheibe, D
Canaves, JM
Guda, C
Jaroszewski, L
Selby, TL
Elsliger, MA
Wooley, J
Taylor, SS
Hodgson, KO
Wilson, IA
Schultz, PG
Stevens, RC
机构
[1] Novaratis Res Fdn, Joint Ctr Struct Genomics, Genomics Inst, San Diego, CA 92121 USA
[2] Stanford Univ, Joint Ctr Struct Genomics, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA
[3] Joint Ctr Struct Genomics, La Jolla, CA 92093 USA
[4] San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, La Jolla, CA 92093 USA
[6] Scripps Res Inst, Joint Ctr Struct Genomics, La Jolla, CA 92037 USA
关键词
D O I
10.1073/pnas.142413399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural genomics is emerging as a principal approach to define protein structure-function relationships. To apply this approach on a genomic scale, novel methods and technologies must be developed to determine large numbers of structures. We describe the design and implementation of a high-throughput structural genomics pipeline and its application to the proteome of the thermophilic bacterium Thermotoga maritima. By using this pipeline, we successfully cloned and attempted expression of 1,376 of the predicted 1,877 genes (73%) and have identified crystallization conditions for 432 proteins, comprising 23% of the T. maritima proteome. Representative structures from TM0423 glycerol dehydrogenase and TM0449 thymidylate synthase-complementing protein are presented as examples of final outputs from the pipeline.
引用
收藏
页码:11664 / 11669
页数:6
相关论文
共 29 条
  • [1] Automation of X-ray crystallography
    Abola, E
    Kuhn, P
    Earnest, T
    Stevens, RC
    [J]. NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) : 973 - 977
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [4] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [5] Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis
    Carpenter, EP
    Hawkins, AR
    Frost, JW
    Brown, KA
    [J]. NATURE, 1998, 394 (6690) : 299 - 302
  • [6] VERIFICATION OF PROTEIN STRUCTURES - PATTERNS OF NONBONDED ATOMIC INTERACTIONS
    COLOVOS, C
    YEATES, TO
    [J]. PROTEIN SCIENCE, 1993, 2 (09) : 1511 - 1519
  • [7] A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS
    FIELDS, S
    SONG, OK
    [J]. NATURE, 1989, 340 (6230) : 245 - 246
  • [8] SELENOMETHIONYL PROTEINS PRODUCED FOR ANALYSIS BY MULTIWAVELENGTH ANOMALOUS DIFFRACTION (MAD) - A VEHICLE FOR DIRECT DETERMINATION OF 3-DIMENSIONAL STRUCTURE
    HENDRICKSON, WA
    HORTON, JR
    LEMASTER, DM
    [J]. EMBO JOURNAL, 1990, 9 (05) : 1665 - 1672
  • [9] DALI - A NETWORK TOOL FOR PROTEIN-STRUCTURE COMPARISON
    HOLM, L
    SANDER, C
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) : 478 - 480
  • [10] Errors in protein structures
    Hooft, RWW
    Vriend, G
    Sander, C
    Abola, EE
    [J]. NATURE, 1996, 381 (6580) : 272 - 272