thin film strain gage;
indium tin oxide;
temperature coefficient of resistance;
D O I:
10.1016/S0924-4247(00)00513-6
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
A ceramic thin film strain gage has been developed for static strain measurements at temperatures up to 1400 degreesC. These thin film sensors are ideally suited for in situ strain measurement in harsh environments, such as those encountered in the hot sections of gas turbine engines. However, the wide bandgap semiconductor used as the active strain elements in these devices also exhibited a large temperature coefficient of resistance (TCR). Thus, to reduce the apparent strain or thermally induced strain in these static strain sensors to an acceptable level, a novel self-compensation scheme was demonstrated using thin film platinum resistors placed in series with the active strain element. A mathematical model was developed and design rules were established for the self-compensated circuitry using this approach. Close agreement between the model and actual static strain results have been achieved using this approach, and reliable static strain measurements have been made over an extended temperature range. (C) 2001 Elsevier Science B.V. All rights reserved.