A Total Variation-Based JPEG Decompression Model

被引:57
作者
Bredies, K. [1 ]
Holler, M. [1 ]
机构
[1] Graz Univ, Dept Math, A-8010 Graz, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2012年 / 5卷 / 01期
基金
奥地利科学基金会;
关键词
total variation; artifact-free JPEG decompression; image reconstruction; optimality system; primal-dual gap; COMPRESSED IMAGES; BOUNDED VARIATION; REGULARIZATION; REDUCTION; RECOVERY;
D O I
10.1137/110833531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a variational model for artifact-free JPEG decompression. It is based on the minimization of the total variation over the convex set U of all possible source images associated with given JPEG data. The general case where U represents a pointwise restriction with respect to an L-2-orthonormal basis is considered. Analysis of the infinite dimensional model is presented, including the derivation of optimality conditions. A discretized version is solved using a primal-dual algorithm supplemented by a primal-dual gap-based stopping criterion. Experiments illustrate the effect of the model. Good reconstruction quality is obtained even for highly compressed images, while a graphics processing unit (GPU) implementation is shown to significantly reduce computation time, making the model suitable for real-time applications.
引用
收藏
页码:366 / 393
页数:28
相关论文
共 31 条
[11]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[12]   A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging [J].
Chambolle, Antonin ;
Pock, Thomas .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) :120-145
[13]   Aspects of total variation regularized L1 function approximation [J].
Chan, TF ;
Esedoglu, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1817-1837
[14]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[15]   An Efficient Primal-Dual Method for L1TV Image Restoration [J].
Dong, Yiqiu ;
Hintermueller, Michael ;
Neri, Marrick .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04) :1168-1189
[16]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions
[17]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[18]   Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration [J].
Hintermueller, Michael ;
Rincon-Camacho, M. Monserrat .
INVERSE PROBLEMS, 2010, 26 (08)
[19]   Total bounded variation regularization as a bilaterally constrained optimization problem [J].
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) :1311-1333
[20]  
Kartalov T., 2007, P 9 INT S SIGN PROC, P1