Geometry of thermodynamic states

被引:8
作者
Brody, DC
Hughston, LP
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[2] Merrill Lynch Int, London EC2Y 9LY, England
[3] Univ London Kings Coll, London WC2R 2LS, England
关键词
D O I
10.1016/S0375-9601(98)00385-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric formalism for statistical estimation is applied here to the canonical distribution of classical statistical mechanics. In this scheme thermodynamic states are characterised by a submanifold M of the unit sphere in a real Hilbert space. The measurement of a thermodynamic variable corresponds to the reduction of a state vector, where the transition probability is the Boltzmann weight. We derive a set of uncertainty relations for conjugate thermodynamic variables. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 18 条
[1]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[2]   GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS [J].
BRODY, D ;
RIVIER, N .
PHYSICAL REVIEW E, 1995, 51 (02) :1006-1011
[3]   Geometry of quantum statistical inference [J].
Brody, DC ;
Hughston, LP .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2851-2854
[4]   Generalised Heisenberg relations for quantum statistical estimation [J].
Brody, DC ;
Hughston, LP .
PHYSICS LETTERS A, 1997, 236 (04) :257-262
[5]  
BRODY DC, 1998, GEOMETRIC UNIVERSE
[6]  
BRODY DC, 1998, P ROY SOC LONDON, V454
[7]   APPROACH TO QUANTIZATION OF GENERAL RELATIVITY [J].
GEROCH, R .
ANNALS OF PHYSICS, 1971, 62 (02) :582-&
[8]  
KITTEL C, 1980, THERMAL PHYSICS
[9]  
LANDAU LD, 1980, STAT PHYSICS
[10]   ROLE OF SUFFICIENCY AND OF ESTIMATION IN THERMODYNAMICS [J].
MANDELBROT, B .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1021-&