Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments

被引:469
作者
Chen, Shanshan [1 ,2 ,3 ]
Moore, Arden L. [1 ,2 ]
Cai, Weiwei [1 ,2 ,3 ]
Suk, Ji Won [1 ,2 ]
An, Jinho [1 ,2 ]
Mishra, Columbia [1 ,2 ]
Amos, Charles [1 ,2 ]
Magnuson, Carl W. [1 ,2 ]
Kang, Junyong [3 ]
Shi, Li [1 ,2 ]
Ruoff, Rodney S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Xiamen Univ, Dept Phys, Fujian Key Lab Semicond Mat & Applicat, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
graphene; thermal conductivity; thermal boundary conductance; Raman spectroscopy; measurements; CONDUCTIVITY; CONDUCTANCE;
D O I
10.1021/nn102915x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using micro-Raman spectroscopy, the thermal conductivity of a graphene monolayer grown by chemical vapor deposition and suspended over holes with different diameters ranging from 2.9 to 9.7 mu m was measured in vacuum, thereby eliminating errors caused by heat loss to the surrounding gas. The obtained thermal conductivity values of the suspended graphene range from (2.6 +/- 0.9) to (3.1 +/- 1.0) x 10(-3) Wm(-1)K(-1)near 350 K without showing the sample size dependence predicted for suspended, clean, and flat graphene crystal The lack, of sample size dependence is attributed to the relatively large measurement uncertainty as well as grain boundaries,,wrinkles, defects, or polymeric residue that ate possibly present in the measured samples. Moreover, from Raman measurements performed In air and CO2 gas environments near atmospheric pressure, the heat transfer coefficient for air and CO2 was determined and found to be (2.9 + 5.1/-2.9) and (1.5 + 4.2/-1.5) x 10(4) Wm(-2)K(-1), respectively, when the graphene temperature was heated by the Raman laser to about 510 K.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 32 条
[11]  
Figliola R.S., 2000, Theory and Design for Mechanical Measurements, V3rd
[12]   Measuring the thermal conductivity of a single carbon nanotube [J].
Fujii, M ;
Zhang, X ;
Xie, HQ ;
Ago, H ;
Takahashi, K ;
Ikuta, T ;
Abe, H ;
Shimizu, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[13]   Heat conduction in graphene: experimental study and theoretical interpretation [J].
Ghosh, S. ;
Nika, D. L. ;
Pokatilov, E. P. ;
Balandin, A. A. .
NEW JOURNAL OF PHYSICS, 2009, 11
[14]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[15]   ANISOTROPY OF THERMAL CONDUCTANCE IN NEAR-IDEAL GRAPHITE [J].
HOOKER, CN ;
UBBELOHDE, AR ;
YOUNG, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 284 (1396) :17-+
[16]   The effect of gas environment on electrical heating in suspended carbon nanotubes [J].
Hsu, I-Kai ;
Pettes, Michael T. ;
Aykol, Mehmet ;
Shi, Li ;
Cronin, Stephen B. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
[17]  
Incropera F. P., 1996, Fundamentals of heat and mass transfer
[18]  
Incropera F.P., 2007, FUNDAMENTAL HEAT MAS, Vsixth
[19]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[20]   Theory of thermal conduction in thin ceramic films [J].
Klemens, PG .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (01) :265-275