Cell therapy for bone disease: A review of current status

被引:113
作者
Cancedda, R
Bianchi, G
Derubeis, A
Quarto, R
机构
[1] Ist Nazl Ric Canc, Ctr Biotecnol Avanzate, I-16132 Genoa, Italy
[2] Univ Genoa, Dipartimento Oncol Biol & Genet, I-16132 Genoa, Italy
关键词
bone marrow stromal cell; mesenchymal stem cell; adult stem cell; plasticity; bone; regenerative medicine; tissue engineering; transplantation; osteogenesis imperfecta;
D O I
10.1634/stemcells.21-5-610
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Bone marrow is a reservoir of pluripotent stem/progenitor cells for mesenchymal tissues. Upon in vitro expansion, in vivo bone-forming efficiency of bone marrow stromal cells (BMSCs) is dramatically lower in comparison with fresh bone marrow, and their in vitro multidifferentiation potentials are gradually lost. Nevertheless, when BMSCs are isolated and expanded in the presence of fibroblast growth factor 2, the percentage of cells able to differentiate into the osteogenic, chondrogenic, and adipogenic lineages is greater. Osteogenic progenitors are not exclusive to skeletal tissues. We could also think of cells in different adult tissues as potentially capable of following an osteochondrogenic differentiation pathway, but, under normal physiological conditions, they are inhibited in this process by the environment and/or the adjacent cell populations. When, for some reason such as pathology, the environment changes dramatically and the inhibiting condition is removed, these cells could become osteoblasts. Bone is repaired via local delivery of cells within a scaffold. Bone formation was first assessed in small animal models. Large animal models were successively developed to prove the feasibility of the tissue engineering approach in a model closer to a real clinical situation. Eventually, pilot clinical studies were performed. Extremely appealing is the possibility of using mesenchymal progenitors in the therapy of genetic bone diseases via systemic infusion. There is experimental evidence to suggest that mesenchymal progenitors delivered by this route engraft with a very low efficiency and do not produce relevant and durable clinical effects. Under some conditions, where the local microenvironment is either altered (i.e., injury) or under important remodeling processes (i.e., fetal growth), engraftment of stem and progenitor cells seems to be enhanced. A better understanding of their engraftment mechanisms will, hopefully, extend the field of therapeutic applications of mesenchymal progenitors.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 109 条
[81]  
Muraglia A, 2000, J CELL SCI, V113, P1161
[82]   REPAIR OF BONE DEFECTS WITH MARROW-CELLS AND POROUS CERAMIC - EXPERIMENTS IN RATS [J].
OHGUSHI, H ;
GOLDBERG, VM ;
CAPLAN, AI .
ACTA ORTHOPAEDICA SCANDINAVICA, 1989, 60 (03) :334-339
[83]   Bone marrow cells regenerate infarcted myocardium [J].
Orlic, D ;
Kajstura, J ;
Chimenti, S ;
Jakoniuk, I ;
Anderson, SM ;
Li, BS ;
Pickel, J ;
McKay, R ;
Nadal-Ginard, B ;
Bodine, DM ;
Leri, A ;
Anversa, P .
NATURE, 2001, 410 (6829) :701-705
[84]  
OWEN M, 1988, J CELL SCI, P63
[85]   Interconversion potential of cloned human marrow adipocytes in vitro [J].
Park, SR ;
Oreffo, ROC ;
Triffitt, JT .
BONE, 1999, 24 (06) :549-554
[86]   CULTURED ADHERENT CELLS FROM MARROW CAN SERVE AS LONG-LASTING PRECURSOR CELLS FOR BONE, CARTILAGE, AND LUNG IN IRRADIATED MICE [J].
PEREIRA, RF ;
HALFORD, KW ;
OHARA, MD ;
LEEPER, DB ;
SOKOLOV, BP ;
POLLARD, MD ;
BAGASRA, O ;
PROCKOP, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :4857-4861
[87]  
Peter SJ, 1998, J CELL BIOCHEM, V71, P55, DOI 10.1002/(SICI)1097-4644(19981001)71:1<55::AID-JCB6>3.0.CO
[88]  
2-0
[89]   Bone marrow as a potential source of hepatic oval cells [J].
Petersen, BE ;
Bowen, WC ;
Patrene, KD ;
Mars, WM ;
Sullivan, AK ;
Murase, N ;
Boggs, SS ;
Greenberger, JS ;
Goff, JP .
SCIENCE, 1999, 284 (5417) :1168-1170
[90]   Tissue-engineered bone regeneration [J].
Petite, H ;
Viateau, V ;
Bensaïd, W ;
Meunier, A ;
de Pollak, C ;
Bourguignon, M ;
Oudina, K ;
Sedel, L ;
Guillemin, G .
NATURE BIOTECHNOLOGY, 2000, 18 (09) :959-963