Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes

被引:152
作者
Fernandez-Argueelles, Maria Teresa
Yakovlev, Aleksey
Sperling, Ralph A.
Luccardini, Camilla
Gaillard, Stephane
Medel, Alfredo Sanz
Mallet, Jean-Maurice
Brochon, Jean-Claude
Feltz, Anne
Oheim, Martin
Parak, Wolfgang J.
机构
[1] Univ Munich, Ctr Nanosci, D-80799 Munich, Germany
[2] Univ Marburg, Fac Phys, D-35037 Marburg, Germany
[3] Univ Oviedo, Dept Phys & Anat Chem, Analyt Spectrometry Res Grp, ES-33006 Oviedo, Spain
[4] CNRS, ENS, UMR 8544, Neurobiol Lab,Dept Biol,Ecole Normale Superieure, F-75005 Paris, France
[5] INSERM S603, F-75006 Paris 13, France
[6] Univ Paris Descartis, Lab Neurophysiol & New Microscopies, F-75006 Paris, France
[7] CNRS, ENS, UMR 8642, Dept Chim, F-75231 Paris, France
[8] CNR, ENS, UMR 8113, Ecole Normale Superieure Cachan, F-94325 Cachan, France
关键词
D O I
10.1021/nl070971d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A fluorescence resonance energy transfer pair consisting of a colloidal quantum dot donor and multiple organic fluorophores as acceptors is reported and the photophysics of the system is characterized. Most nanoparticle-based biosensors reported so far use the detection of specific changes of the donor/acceptor distance under the influence of analyte binding. Our nanoparticle design on the other hand leads to sensors that detect spectral changes of the acceptor (under the influence of analyte binding) at fixed donor/acceptor distance by the introduction of the acceptor into the polymer coating. This approach allows for short acceptor-donor separation and thus for high-energy transfer efficiencies. Advantageously, the binding properties of the hydrophilic polymer coating further allows for addition of poly(ethylene glycol) shells for improved colloidal stability.
引用
收藏
页码:2613 / 2617
页数:5
相关论文
共 37 条
[1]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[2]   Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers [J].
Boldt, K ;
Bruns, OT ;
Gaponik, N ;
Eychmüller, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (05) :1959-1963
[3]  
BROCHON JC, 1994, METHOD ENZYMOL, V240, P262
[4]   Forster resonance energy transfer investigations using quantum-dot fluorophores [J].
Clapp, AR ;
Medintz, IL ;
Mattoussi, H .
CHEMPHYSCHEM, 2006, 7 (01) :47-57
[5]   Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J].
Dahan, M ;
Lévi, S ;
Luccardini, C ;
Rostaing, P ;
Riveau, B ;
Triller, A .
SCIENCE, 2003, 302 (5644) :442-445
[6]   Quantum dots - DNA detectives [J].
Dubertret, B .
NATURE MATERIALS, 2005, 4 (11) :797-798
[7]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762
[8]   Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage [J].
Gill, R ;
Willner, I ;
Shweky, I ;
Banin, U .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (49) :23715-23719
[9]   A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J].
Goldman, ER ;
Medintz, IL ;
Whitley, JL ;
Hayhurst, A ;
Clapp, AR ;
Uyeda, HT ;
Deschamps, JR ;
Lassman, ME ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6744-6751
[10]   Design and characterization of lysine cross-linked mereapto-acid biocompatible quantum dots [J].
Jiang, W ;
Mardyani, S ;
Fischer, H ;
Chan, WCW .
CHEMISTRY OF MATERIALS, 2006, 18 (04) :872-878