Total Generalized Variation

被引:1154
作者
Bredies, Kristian [1 ]
Kunisch, Karl [1 ]
Pock, Thomas [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Comp Graph & Vis, A-8010 Graz, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2010年 / 3卷 / 03期
基金
奥地利科学基金会;
关键词
bounded variation; total generalized variation; tensor fields; regularization; image denoising; TOTAL VARIATION MINIMIZATION; VARIATION REGULARIZATION; ALGORITHM;
D O I
10.1137/090769521
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The novel concept of total generalized variation of a function u is introduced, and some of its essential properties are proved. Differently from the bounded variation seminorm, the new concept involves higher-order derivatives of u. Numerical examples illustrate the high quality of this functional as a regularization term for mathematical imaging problems. In particular this functional selectively regularizes on different regularity levels and, as a side effect, does not lead to a staircasing effect.
引用
收藏
页码:492 / 526
页数:35
相关论文
共 21 条
[11]   A HIGHER ORDER MODEL FOR IMAGE RESTORATION: THE ONE-DIMENSIONAL CASE [J].
Dal Maso, G. ;
Fonseca, I. ;
Leoni, G. ;
Morini, M. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) :2351-2391
[12]  
Delfour M. C., 2001, ADV DES CONTROL, V4
[13]   Total bounded variation regularization as a bilaterally constrained optimization problem [J].
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) :1311-1333
[14]  
Nesterov Y., 1983, Sov Math Dokl, V27, P372
[15]   Local strong homogeneity of a regularized estimator [J].
Nikolova, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (02) :633-658
[16]  
Pöschl C, 2008, CONTEMP MATH, V451, P219
[17]   Structural properties of solutions to total variation regularization problems [J].
Ring, W .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (04) :799-810
[18]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[19]  
Scherzer O, 2009, APPL MATH SCI, V167, P3
[20]  
Setzer S., 2008, APPROXIMATION, P360