Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes

被引:696
作者
Etacheri, Vinodkumar [1 ]
Haik, Ortal [1 ]
Goffer, Yossi [1 ]
Roberts, Gregory A. [2 ]
Stefan, Ionel C. [2 ]
Fasching, Rainier [2 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Amprius Inc, Menlo Pk, CA 94025 USA
关键词
SOLID-ELECTROLYTE INTERPHASE; ELECTROCHEMICAL PERFORMANCE; SILICON ANODES; THIN-FILM; LITHIUM; NANOCOMPOSITE; SPECTROSCOPY; SOLVENTS; BEHAVIOR; STORAGE;
D O I
10.1021/la203712s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of FEC as a co-solvent on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was thoroughly investigated. Enhanced electrochemical performance was observed for SiNW anodes in alkyl carbonates electrolyte solutions containing fluoroethylene carbonate (FEC). Reduced irreversible capacity losses accompanied by enhanced and stable reversible capacities over prolonged cycling were achieved with FEC-containing electrolyte solutions. TEM studies provided evidence for the complete and incomplete lithiation of SiNW's in FEC-containing and FEC-free electrolyte solutions, respectively. Scanning electron microscopy (SEM) results proved the formation of much thinner and compact surface films on SiNW's in FEC-containing solutions. However, thicker surface films were identified for SiNW electrodes cycled in FEC-free solutions. SiNW electrodes develop lower impedance in electrolyte solutions containing FEC in contrast to standard (FEC-free) solutions. The surface chemistry of SiNW electrodes cycled in FEC-modified and standard electrolytes investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The impact of FEC as a co-solvent on the electrochemical behavior of SiNW electrodes is discussed herein in light of the spectroscopic and microscopic studies.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 60 条
[11]   Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance [J].
Cai, Rui ;
Yu, Xing ;
Liu, Xiaoqin ;
Shao, Zongping .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8244-8250
[12]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[13]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[14]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[15]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[16]   Virus-Enabled Silicon Anode for Lithium-Ion Batteries [J].
Chen, Xilin ;
Gerasopoulos, Konstantinos ;
Guo, Juchen ;
Brown, Adam ;
Wang, Chunsheng ;
Ghodssi, Reza ;
Culver, James N. .
ACS NANO, 2010, 4 (09) :5366-5372
[17]   Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery [J].
Cheng, XQ ;
Shi, PF .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 391 (1-2) :241-244
[18]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[19]   Influence of temperature on the interface chemistry of LixMn2O4 electrodes [J].
Eriksson, T ;
Andersson, AM ;
Gejke, C ;
Gustafsson, T ;
Thomas, JO .
LANGMUIR, 2002, 18 (09) :3609-3619
[20]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262