On optimal quantum codes

被引:205
作者
Grassl, M
Beth, T
Rötteler, M
机构
[1] Univ Karlsruhe, Inst Algorithmen & Kognit Syst, D-76128 Karlsruhe, Germany
[2] Univ Waterloo, Fac Math, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
quantum error-correcting codes; quantum MDS codes;
D O I
10.1142/S0219749904000079
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime power. It is shown that codes with parameters [n,n - 2d + 2,d](q) exist for all 3 <= n <= q and 1 <= d <= n/2 + 1. We also present quantum MDS codes with parameters [q(2), q(2) - 2d + 2,d](q) for 1 <= d <= q which additionally give rise to shortened codes [q(2) - s, q(2) - 2d + 2 - s,d](q) for some s.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 14 条
[1]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176, DOI DOI 10.1145/258533.258579
[2]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[5]   Five quantum register error correction code for higher spin systems [J].
Chau, HF .
PHYSICAL REVIEW A, 1997, 56 (01) :R1-R4
[6]  
CHI DP, 2001, KIAS WORKSH QUANT CO
[7]   Quantum codes [[6,2,3]]p and [[7,3,3]]p (p ≥ 3) exist [J].
Feng, KQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2384-2391
[8]  
Gottesman D, 1999, LECT NOTES COMPUT SC, V1509, P302
[9]  
Grassl M., 2003, International Journal of Foundations of Computer Science, V14, P757, DOI 10.1142/S0129054103002011
[10]  
Hamada M, 2003, 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, P480