Quantum codes [[6,2,3]]p and [[7,3,3]]p (p ≥ 3) exist

被引:43
作者
Feng, KQ [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
nonbinary quantum codes; quantum stabilizer codes;
D O I
10.1109/TIT.2002.800469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that nonbinary quantum stabilizer codes with parameters [[n, k, d]](p) = [[6, 2, 3]](p) and [[7, 3, 3]](p) exist for all odd primes p by using graph machinary, given by Schlingemann and Werner, with a little number theory and combinatorics.
引用
收藏
页码:2384 / 2391
页数:8
相关论文
共 9 条
[1]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[2]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[3]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[4]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[5]  
MATSUMOTO R, 1999, QUANTPH9911011
[6]   Nonbinary quantum codes [J].
Rains, EM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :1827-1832
[7]   Quantum error-correcting codes associated with graphs [J].
Schlingemann, D ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 65 (01) :8
[8]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[9]   Multiple-particle interference and quantum error correction [J].
Steane, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1954) :2551-2577