Production of Extended Single-Layer Graphene

被引:90
作者
Xu, Mingsheng [1 ,2 ]
Fujita, Daisuke [3 ,4 ]
Sagisaka, Keisuke [3 ]
Watanabe, Eiichiro [5 ]
Hanagata, Nobutaka [5 ,6 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Young Scientists, Tsukuba, Ibaraki 3050047, Japan
[2] Zhejiang Univ, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Natl Inst Mat Sci, Adv Nano Characterizat Ctr, Tsukuba, Ibaraki 3050047, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050047, Japan
[5] Natl Inst Mat Sci, Nanotechnol Innovat Ctr, Tsukuba, Ibaraki 3050047, Japan
[6] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido, Japan
基金
中国国家自然科学基金;
关键词
graphene; nickel; epitaxial growth; monolayer graphene; highly oriented pyrolytic graphite; LARGE-AREA; CARBON; FILMS; GRAPHITE; PRECIPITATION; SURFACE; GROWTH; SIZE;
D O I
10.1021/nn103428k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has attracted an enormous amount of interest recently because of its unique electronic, optical, mechanical, and other properties. We report a promising method for producing single-layer graphene fully covering an entire substrate at low temperature. Single-layer graphene sheets have been synthesized on a whole 2 cm x 2 cm nickel (Ni) film deposited on a highly oriented pyrolytic graphite (HOPG) substrate by heating the Ni/HOPG in a vacuum. The carbon atoms forming our graphene are diffused from the graphite substrate through the nickel template. Our results demonstrate how to control the amount of carbon atoms for graphene formation to yield graphene films with a fine controlled thickness and crystal structure. Our method represents a significant step toward the scalable synthesis of high-quality graphene films with predefined thickness and toward realizing the unique properties of graphene films.
引用
收藏
页码:1522 / 1528
页数:7
相关论文
共 42 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[4]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]
[5]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   SURFACE PRECIPITATION PROCESS OF EPITAXIALLY GROWN GRAPHITE (0001) LAYERS ON CARBON-DOPED NICKEL(111) SURFACE [J].
FUJITA, D ;
YOSHIHARA, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1994, 12 (04) :2134-2139
[8]   Unique Synthesis of Few-Layer Graphene Films on Carbon-Doped Pt83Rh17 Surfaces [J].
Gao, Jian-Hua ;
Fujita, Daisuke ;
Xu, Ming-Sheng ;
Onishi, Keiko ;
Miyamoto, Satoru .
ACS NANO, 2010, 4 (02) :1026-1032
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Revealing the hidden atom in graphite by low-temperature atomic force microscopy [J].
Hembacher, S ;
Giessibl, FJ ;
Mannhart, J ;
Quate, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12539-12542