Optothermal sample preconcentration and manipulation with temperature gradient focusing

被引:15
作者
Akbari, M. [2 ]
Bahrami, M. [2 ]
Sinton, D. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Simon Fraser Univ, Surrey, BC V3T 0A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optothermal; Temperature gradient focusing; Preconcentration; Analyte manipulation; Microfluidics; DNA AMPLIFICATION; FIELD; FLOW; INJECTION; STACKING; VOLUME; ELECTROPHORESIS; SEPARATION; CHIP; PCR;
D O I
10.1007/s10404-011-0866-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this article, we present an optothermal analyte preconcentration method based on temperature gradient focusing. This approach offers a flexible, noninvasive technique for focusing and transporting charged analytes in microfluidics using light energy. The method uses the optical field control provided by a digital projector as established for particle manipulation, to achieve analogous functionality for molecular analytes for the first time. The optothermal heating system is characterized and the ability to control of the heated zone location, size, and power is demonstrated. The method is applied to concentrate a sample model analyte, along a microcapillary, resulting in almost 500-fold local concentration increase in 15 min. Optically controlled upstream and downstream transport of a focused analyte band is demonstrated with a heater velocity of similar to 170 mu m/min.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 55 条
[1]   Large-volume stacking for quantitative analysis of anions in capillary electrophoresis .1. Large-volume stacking with polarity switching [J].
Albert, M ;
Debusschere, L ;
Demesmay, C ;
Rocca, JL .
JOURNAL OF CHROMATOGRAPHY A, 1997, 757 (1-2) :281-289
[2]  
[Anonymous], 2003, INT J COMPUT ENG SCI, DOI DOI 10.1142/S1465876303001095
[3]   Latest Developments in Micro Total Analysis Systems [J].
Arora, Arun ;
Simone, Giuseppina ;
Salieb-Beugelaar, Georgette B. ;
Kim, Jung Tae ;
Manz, Andreas .
ANALYTICAL CHEMISTRY, 2010, 82 (12) :4830-4847
[4]   Microfluidic electrocapture for separation of peptides [J].
Astorga-Wells, J ;
Vollmer, S ;
Tryggvason, S ;
Bergman, T ;
Jörnvall, H .
ANALYTICAL CHEMISTRY, 2005, 77 (22) :7131-7136
[5]   Micellar affinity gradient focusing: A new method for electrokinetic focusing [J].
Balss, KM ;
Vreeland, WN ;
Howell, PB ;
Henry, AC ;
Ross, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (07) :1936-1937
[6]   Temperature gradient focusing in miniaturized free-flow electrophoresis devices [J].
Becker, Marco ;
Mansouri, Abraham ;
Beilein, Cornelia ;
Janasek, Dirk .
ELECTROPHORESIS, 2009, 30 (24) :4206-4212
[7]  
BOCEK P, 1978, J CHROMATOGR, V156, P323
[8]   OPTIMIZATION IN SAMPLE STACKING FOR HIGH-PERFORMANCE CAPILLARY ELECTROPHORESIS [J].
BURGI, DS ;
CHIEN, RL .
ANALYTICAL CHEMISTRY, 1991, 63 (18) :2042-2047
[9]   SAMPLE STACKING OF AN EXTREMELY LARGE INJECTION VOLUME IN HIGH-PERFORMANCE CAPILLARY ELECTROPHORESIS [J].
CHIEN, RL ;
BURGI, DS .
ANALYTICAL CHEMISTRY, 1992, 64 (09) :1046-1050
[10]   Light-actuated ac electroosmosis for nanoparticle manipulation [J].
Chiou, Pei-Yu ;
Ohta, Aaron T. ;
Jamshidi, Arash ;
Hsu, Hsin-Yi ;
Wu, Ming C. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (03) :525-531