Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow

被引:63
作者
Adzhemyan, LT [1 ]
Antonov, NV [1 ]
机构
[1] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 06期
关键词
D O I
10.1103/PhysRevE.58.7381
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Field theoretical renormalization group (RG) methods are applied to a simple model of a passive scalar quantity advected by the Gaussian nonsolenoidal ("compressible") velocity field with the covariance proportional to delta(t - t')\x - x'\(epsilon). Convective-range anomalous scaling for the structure functions and various pair correlators is established, and the corresponding anomalous exponents are calculated to the order epsilon(2) Of the epsilon expansion. These exponents are nonuniversal, as a result of the degeneracy of the RG fixed point. In contrast to the case of a purely solenoidal velocity field (Obukhov-Kraichnan model), the correlation functions in the case at hand exhibit a nontrivial dependence on both the IR and UV characteristic scales, and the anomalous scaling appears already at the level of the pair correlator. The powers of the scalar field without derivatives, whose critical dimensions determine the anomalous exponents, exhibit multifractal behavior. The exact solution for the pair correlator is obtained; it is in agreement with the result obtained within the epsilon expansion. The anomalous exponents for passively advected magnetic fields are also presented in the first order of the epsilon expansion. [S1063-651X(98)06412-5].
引用
收藏
页码:7381 / 7396
页数:16
相关论文
共 46 条
[11]   Nonuniversality of the scaling exponents of a passive scalar convected by a random flow [J].
Chertkov, M ;
Falkovich, G ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3707-3710
[12]   NORMAL AND ANOMALOUS SCALING OF THE 4TH-ORDER CORRELATION-FUNCTION OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
CHERTKOV, M ;
FALKOVICH, G ;
KOLOKOLOV, I ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1995, 52 (05) :4924-4941
[13]  
Dominicis CD., 1976, J PHYS-PARIS, V37, P247
[14]   MULTIFRACTALS, OPERATOR PRODUCT EXPANSION, AND FIELD-THEORY [J].
DUPLANTIER, B ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 66 (03) :247-251
[15]   DYNAMICS OF THE PASSIVE SCALAR IN COMPRESSIBLE TURBULENT-FLOW - LARGE-SCALE PATTERNS AND SMALL-SCALE FLUCTUATIONS [J].
ELPERIN, T ;
KLEEORIN, N ;
ROGACHEVSKII, I .
PHYSICAL REVIEW E, 1995, 52 (03) :2617-2634
[16]   Dissipation independence of the inertial-convective range in a passive scalar model [J].
Eyink, G ;
Xin, J .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2674-2677
[17]   Intermittency and anomalous scaling of passive scalars in any space dimension [J].
Eyink, GL .
PHYSICAL REVIEW E, 1996, 54 (02) :1497-1503
[18]   Anomalous scaling in a model of passive scalar advection: Exact results [J].
Fairhall, AL ;
Gat, O ;
Lvov, V ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 53 (04) :3518-3535
[19]   Direct numerical simulations of the Kraichnan model: Scaling exponents and fusion rules [J].
Fairhall, AL ;
Galanti, B ;
Lvov, VS ;
Procaccia, I .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4166-4169
[20]   INFRARED PROPERTIES OF FORCED MAGNETO-HYDRODYNAMIC TURBULENCE [J].
FOURNIER, JD ;
SULEM, PL ;
POUQUET, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (04) :1393-1420