Diffeomorphisms in group field theories

被引:70
作者
Baratin, Aristide [1 ,2 ]
Girelli, Florian [3 ]
Oriti, Daniele [4 ]
机构
[1] Univ Paris 11, CPHT Ecole Polytech, IPhT Saclay, LPT Orsay, F-91405 Orsay, France
[2] Univ Paris 11, CNRS, Phys Theor Lab, UMR 8627, F-91405 Orsay, France
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14467 Golm, Germany
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
关键词
LOOP QUANTUM-GRAVITY; SPIN FOAM MODELS; FEYNMAN DIAGRAMS; SPACETIME; GEOMETRY;
D O I
10.1103/PhysRevD.83.104051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the issue of diffeomorphism symmetry in group field theories (GFT), using the non-commutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105, 221302 (2010).]. In the colored Boulatov model for 3d gravity, we identify a field (quantum) symmetry which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical quantum gravity, and the topological (coarse-graining) identities for the 6j symbols. We also show how, for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT models for higher-dimensional BF theories and discuss various insights that they provide on the GFT formalism itself.
引用
收藏
页数:22
相关论文
共 59 条
[1]   Reconstructing the Universe [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW D, 2005, 72 (06)
[2]   3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1133-1146
[3]  
[Anonymous], FDN SPACE TIME
[4]  
[Anonymous], THESIS U CAMBRIDGE
[5]   Spin foam models [J].
Baez, JC .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) :1827-1858
[6]   (Broken) Gauge symmetries and constraints in Regge calculus [J].
Bahr, Benjamin ;
Dittrich, Bianca .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (22)
[7]   Statistics and UV-IR mixing with twisted Poincare invariance [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
Mangano, G. ;
Pinzul, A. ;
Qureshi, B. A. ;
Vaidya, S. .
PHYSICAL REVIEW D, 2007, 75 (04)
[8]  
BARATIN A, UNPUB
[9]  
Baratin A., ARXIV10043450
[10]   Group Field Theory with Noncommutative Metric Variables [J].
Baratin, Aristide ;
Oriti, Daniele .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)