Group Field Theory with Noncommutative Metric Variables

被引:101
作者
Baratin, Aristide [1 ]
Oriti, Daniele [1 ]
机构
[1] Albert Einstein Inst, D-14476 Golm, Germany
关键词
QUANTUM-GRAVITY; MODEL;
D O I
10.1103/PhysRevLett.105.221302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Quantum-gravity phenomenology: Status and prospects [J].
Amelino-Camelia, G .
MODERN PHYSICS LETTERS A, 2002, 17 (15-17) :899-922
[2]  
[Anonymous], ARXIVGRQC0607032
[3]  
Barrett J. W., ARXIV09072440
[4]  
BENGELOUN J, ARXIV09111719
[5]  
BENGELOUN J, ARXIV10023592
[6]   Spin foam models for quantum gravity from lattice path integrals [J].
Bonzom, Valentin .
PHYSICAL REVIEW D, 2009, 80 (06)
[7]   Lagrangian approach to the Barrett-Crane spin foam model [J].
Bonzom, Valentin ;
Livine, Etera R. .
PHYSICAL REVIEW D, 2009, 79 (06)
[8]   A MODEL OF 3-DIMENSIONAL LATTICE GRAVITY [J].
BOULATOV, DV .
MODERN PHYSICS LETTERS A, 1992, 7 (18) :1629-1646
[9]   Semiclassical limit of 4-dimensional spin foam models [J].
Conrady, Florian ;
Freidel, Laurent .
PHYSICAL REVIEW D, 2008, 78 (10)
[10]   Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space [J].
De Pietri, R ;
Freidel, L ;
Krasnov, K ;
Rovelli, C .
NUCLEAR PHYSICS B, 2000, 574 (03) :785-806