Group Field Theory with Noncommutative Metric Variables

被引:101
作者
Baratin, Aristide [1 ]
Oriti, Daniele [1 ]
机构
[1] Albert Einstein Inst, D-14476 Golm, Germany
关键词
QUANTUM-GRAVITY; MODEL;
D O I
10.1103/PhysRevLett.105.221302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
引用
收藏
页数:4
相关论文
共 26 条
[11]  
DITTRICH B, ARXIV08072806
[12]   LQG vertex with finite Immirzi parameter [J].
Engle, Jonathan ;
Livine, Etera ;
Pereira, Roberto ;
Rovelli, Carlo .
NUCLEAR PHYSICS B, 2008, 799 (1-2) :136-149
[13]   3D spinfoam quantum gravity: matter as a phase of the group field theory [J].
Fairbairn, Winston J. ;
Livine, Etera R. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (20) :5277-5297
[14]   Ponzano-Regge model revisited: III. Feynman diagrams and effective field theory [J].
Freidel, Laurent ;
Livine, Etera R. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) :2021-2061
[15]   Twisted geometries: A geometric parametrization of SU(2) phase space [J].
Freidel, Laurent ;
Speziale, Simone .
PHYSICAL REVIEW D, 2010, 82 (08)
[16]   Group field theory renormalization in the 3D case: Power counting of divergences [J].
Freidel, Laurent ;
Gurau, Razvan ;
Oriti, Daniele .
PHYSICAL REVIEW D, 2009, 80 (04)
[17]   Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity [J].
Freidel, Laurent ;
Majid, Shahn .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (04)
[18]   Three dimensional quantum geometry and deformed symmetry [J].
Joung, E. ;
Mourad, J. ;
Noui, K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
[19]  
LIVINE E, 2010, PHYS REV D, V81
[20]   A note on B-observables in Ponzano-Regge 3D quantum gravity [J].
Livine, Etera R. ;
Ryan, James P. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (03)