Dynamics of Limit-Cycle Oscillators Subject to General Noise

被引:97
作者
Goldobin, Denis S. [1 ,2 ]
Teramae, Jun-nosuke [3 ]
Nakao, Hiroya [4 ]
Ermentrout, G. Bard [5 ]
机构
[1] UB RAS, Inst Continuous Media Mech, Perm 614013, Russia
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
[3] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
[4] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[5] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
DELAYED FEEDBACK; COUPLED OSCILLATORS; SYNCHRONIZATION; POPULATIONS; RELIABILITY;
D O I
10.1103/PhysRevLett.105.154101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase description is a powerful tool for analyzing noisy limit-cycle oscillators. The method, however, has found only limited applications so far, because the present theory is applicable only to Gaussian noise while noise in the real world often has non-Gaussian statistics. Here, we provide the phase reduction method for limit-cycle oscillators subject to general, colored and non-Gaussian, noise including a heavy-tailed one. We derive quantifiers like mean frequency, diffusion constant, and the Lyapunov exponent to confirm consistency of the results. Applying our results, we additionally study a resonance between the phase and noise.
引用
收藏
页数:4
相关论文
共 31 条
[11]  
Goldobin DS, 2006, PROG THEOR PHYS SUPP, P43, DOI 10.1143/PTPS.161.43
[12]   Synchronization of self-sustained oscillators by common white noise [J].
Goldobin, DS ;
Pikovsky, AS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 351 (01) :126-132
[13]   Noise and determinism in synchronized sheep dynamics [J].
Grenfell, BT ;
Wilson, K ;
Finkenstädt, BF ;
Coulson, TN ;
Murray, S ;
Albon, SD ;
Pemberton, JM ;
Clutton-Brock, TH ;
Crawley, MJ .
NATURE, 1998, 394 (6694) :674-677
[14]   RELIABILITY OF SPIKE TIMING IN NEOCORTICAL NEURONS [J].
MAINEN, ZF ;
SEJNOWSKI, TJ .
SCIENCE, 1995, 268 (5216) :1503-1506
[15]   Mechanism of desynchronization in the finite-dimensional Kuramoto model [J].
Maistrenko, Y ;
Popovych, O ;
Burylko, O ;
Tass, PA .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :084102-1
[16]   Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators [J].
Nakao, Hiroya ;
Arai, Kensuke ;
Kawamura, Yoji .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[17]   Noise induced synchronization in a neuronal oscillator [J].
Pakdaman, K ;
Mestivier, D .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 192 (1-2) :123-137
[18]  
PIKOVSKII AS, 1984, QUANTUM ELECTRON, V27, P390
[19]  
Pikovsky Arkady., 2003, SYNCHRONIZATION
[20]   Control of neuronal synchrony by nonlinear delayed feedback [J].
Popovych, Oleksandr V. ;
Hauptmann, Christian ;
Tass, Peter A. .
BIOLOGICAL CYBERNETICS, 2006, 95 (01) :69-85