Biomarkers Predict Progression of Acute Kidney Injury after Cardiac Surgery

被引:221
作者
Koyner, Jay L. [2 ]
Garg, Amit X. [3 ]
Coca, Steven G. [1 ,4 ]
Sint, Kyaw [1 ,4 ]
Thiessen-Philbrook, Heather [3 ]
Patel, Uptal D. [5 ]
Shlipak, Michael G. [6 ]
Parikh, Chirag R. [1 ,4 ]
机构
[1] Yale Univ, Nephrol Sect, Sch Med, Dept Internal Med, West Haven, CT 06516 USA
[2] Univ Chicago, Pritzker Sch Med, Dept Med, Nephrol Sect, Chicago, IL 60637 USA
[3] Univ Western Ontario, Dept Med, Div Nephrol, London, ON, Canada
[4] Vet Affairs Med Ctr, Clin Epidemiol Res Ctr, West Haven, CT USA
[5] Duke Univ, Sch Med, Durham, NC USA
[6] Univ Calif San Francisco, Div Gen Internal Med, Vet Adm Med Ctr, San Francisco, CA 94143 USA
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2012年 / 23卷 / 05期
基金
加拿大健康研究院;
关键词
ACUTE-RENAL-FAILURE; GLOMERULAR-FILTRATION-RATE; SERUM CYSTATIN C; URINARY BIOMARKERS; FRACTIONAL EXCRETION; RISK; OUTCOMES; PROTEINURIA; DIALYSIS; THERAPY;
D O I
10.1681/ASN.2011090907
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Being able to predict whether AKI will progress could improve monitoring and care, guide patient counseling, and assist with enrollment into trials of AKI treatment. Using samples from the Translational Research Investigating Biomarker Endpoints in AKI study (TRIBE-AKI), we evaluated whether kidney injury biomarkers measured at the time of first clinical diagnosis of early AKI after cardiac surgery can forecast AKI severity. Biomarkers included urinary IL-18, urinary albumin to creatinine ratio (ACR), and urinary and plasma neutrophil gelatinase-associated lipocalin (NGAL); each measurement was on the day of AKI diagnosis in 380 patients who developed at least AKI Network (AKIN) stage 1 AKI. The primary end point (progression of AKI defined by worsening AKIN stage) occurred in 45 (11.8%) patients. Using multivariable logistic regression, we determined the risk of AKI progression. After adjustment for clinical predictors, compared with biomarker values in the lowest two quintiles, the highest quintiles of three biomarkers remained associated with AKI progression: IL-18 (odds ratio=3.0, 95% confidence interval=1.3-7.3), ACR (odds ratio=3.4, 95% confidence interval=1.3-9.1), and plasma NGAL (odds ratio=7.7, 95% confidence interval=2.6-22.5). Each biomarker improved risk classification compared with the clinical model alone, with plasma NGAL performing the best (category-free net reclassification improvement of 0.69, P<0.0001). In conclusion, biomarkers measured on the day of AKI diagnosis improve risk stratification and identify patients at higher risk for progression of AKI and worse patient outcomes.
引用
收藏
页码:905 / 914
页数:10
相关论文
共 39 条
  • [21] Does urinalysis predict acute renal failure after heart surgery?
    Magro, MCD
    Vattimo, MDF
    [J]. RENAL FAILURE, 2004, 26 (04) : 385 - 392
  • [22] Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery
    Mehta, Rajendra H.
    Grab, Joshua D.
    O'Brien, Sean M.
    Bridges, Charles R.
    Gammie, James S.
    Haan, Constance K.
    Ferguson, T. Bruce
    Peterson, Eric D.
    [J]. CIRCULATION, 2006, 114 (21) : 2208 - 2216
  • [23] Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury
    Mehta, Ravindra L.
    Kellum, John A.
    Shah, Sudhir V.
    Molitoris, Bruce A.
    Ronco, Claudio
    Warnock, David G.
    Levin, Adeera
    [J]. CRITICAL CARE, 2007, 11 (02):
  • [24] COURSE OF ACUTE RENAL-FAILURE STUDIED BY A MODEL OF CREATININE KINETICS
    MORAN, SM
    MYERS, BD
    [J]. KIDNEY INTERNATIONAL, 1985, 27 (06) : 928 - 937
  • [25] New biomarkers of acute kidney injury
    Parikh, Chirag R.
    Devarajan, Prasad
    [J]. CRITICAL CARE MEDICINE, 2008, 36 (04) : S159 - S165
  • [26] Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Adult Cardiac Surgery
    Parikh, Chirag R.
    Coca, Steven G.
    Thiessen-Philbrook, Heather
    Shlipak, Michael G.
    Koyner, Jay L.
    Wang, Zhu
    Edelstein, Charles L.
    Devarajan, Prasad
    Patel, Uptal D.
    Zappitelli, Michael
    Krawczeski, Catherine D.
    Passik, Cary S.
    Swaminathan, Madhav
    Garg, Amit X.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2011, 22 (09): : 1748 - 1757
  • [27] Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models
    Pencina, Michael J.
    D'Agostino, Ralph B., Sr.
    Demler, Olga V.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (02) : 101 - 113
  • [28] Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
    Pencina, Michael J.
    D'Agostino, Ralph B., Sr.
    Steyerberg, Ewout W.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (01) : 11 - 21
  • [29] Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment
    Pepin, Marie-Noelle
    Bouchard, Josee
    Legault, Louis
    Ethier, Jean
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2007, 50 (04) : 566 - 573
  • [30] Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery
    Portilla, D.
    Dent, C.
    Sugaya, T.
    Nagothu, K. K.
    Kundi, I.
    Moore, P.
    Noiri, E.
    Devarajan, P.
    [J]. KIDNEY INTERNATIONAL, 2008, 73 (04) : 465 - 472