Device Physics of Dye Solar Cells

被引:373
作者
Halme, Janne [1 ]
Vahermaa, Paula [1 ]
Miettunen, Kati [1 ]
Lund, Peter [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, FI-00076 Aalto, Finland
关键词
NANOSTRUCTURED SEMICONDUCTOR ELECTRODES; EQUIVALENT-CIRCUIT; BACK-REACTION; CONVERSION EFFICIENCY; CHARGE-TRANSFER; INTENSITY DEPENDENCE; COUNTER ELECTRODES; MATHEMATICAL-MODEL; IMPEDANCE SPECTRA; TITANIUM-DIOXIDE;
D O I
10.1002/adma.201000726
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Design of new materials for nanostructured dye solar cells (DSC) requires understanding the link between the material properties and cell efficiency. This paper gives an overview of the fundamental and practical aspects of the modeling and characterization of DSCs, and integrates the knowledge into a user-friendly DSC device model. Starting from basic physical and electrochemical concepts, mathematical expressions for the IV curve and differential resistance of all resistive cell components are derived and their relation to electrochemical impedance spectroscopy (EIS) is explained. The current understanding of the associated physics is discussed in detail and clarified. It is shown how the model parameters can be determined from complete DSCs by current dependent EIS and incident-photon-to-collected-electron (IPCE) measurements, supplemented by optical characterization, and used to quantify performance losses in DSCs. The paper aims to give a necessary theoretical background and practical guidelines for establishing an effective feedback-loop for DSC testing and development.
引用
收藏
页码:E210 / E234
页数:25
相关论文
共 101 条
[21]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919
[22]   Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation [J].
Duffy, NW ;
Peter, LM ;
Wijayantha, KGU .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (04) :262-266
[23]   How Efficient Is Electron Collection in Dye-Sensitized Solar Cells? Comparison of Different Dynamic Methods for the Determination of the Electron Diffusion Length [J].
Dunn, Halina K. ;
Peter, Laurence M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4726-4731
[24]   Towards optimisation of electron transfer processes in dye sensitised solar cells [J].
Durrant, JR ;
Haque, SA ;
Palomares, E .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1247-1257
[25]   Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy [J].
Fabregat-Santiago, F ;
Bisquert, J ;
Garcia-Belmonte, G ;
Boschloo, G ;
Hagfeldt, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :117-131
[26]   Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids [J].
Fabregat-Santiago, Francisco ;
Bisquert, Juan ;
Palomares, Emilio ;
Otero, Luis ;
Kuang, Daibin ;
Zakeeruddin, Shaik M. ;
Gratzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (17) :6550-6560
[27]   An electrical model of the dye-sensitized solar cell [J].
Ferber, J ;
Stangl, R ;
Luther, J .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 53 (1-2) :29-54
[28]   Modeling of photovoltage and photocurrent in dye-sensitized titanium dioxide solar cells [J].
Ferber, J ;
Luther, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (21) :4895-4903
[29]   Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells [J].
Fisher, AC ;
Peter, LM ;
Ponomarev, EA ;
Walker, AB ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (05) :949-958
[30]   Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells [J].
Franco, G ;
Gehring, J ;
Peter, LM ;
Ponomarev, EA ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :692-698