Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers

被引:184
作者
Lundegaard, Claus [1 ]
Lund, Ole [1 ]
Nielsen, Morten [1 ]
机构
[1] Tech Univ Denmark, Ctr Biol Sequence Anal CBS, Dept Syst Biol, DK-2800 Lyngby, Denmark
关键词
D O I
10.1093/bioinformatics/btn128
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate binding affinity prediction of peptides of length 8, 10 and 11. The method gives the opportunity to predict peptides with a different length than nine for MHC alleles where no such peptides have been measured. As validation, the performance of this approach is compared to predictors trained on peptides of the peptide length in question. In this validation, the approximation method has an accuracy that is comparable to or better than methods trained on a peptide length identical to the predicted peptides.
引用
收藏
页码:1397 / 1398
页数:2
相关论文
共 10 条
[1]   Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach [J].
Buus, S ;
Lauemoller, SL ;
Worning, P ;
Kesmir, C ;
Frimurer, T ;
Corbet, S ;
Fomsgaard, A ;
Hilden, J ;
Holm, A ;
Brunak, S .
TISSUE ANTIGENS, 2003, 62 (05) :378-384
[2]   Definition of supertypes for HLA molecules using clustering of specificity matrices [J].
Lund, O ;
Nielsen, M ;
Kesmir, C ;
Petersen, AG ;
Lundegaard, C ;
Worning, P ;
Sylvester-Hvid, C ;
Lamberth, K ;
Roder, G ;
Justesen, S ;
Buus, S ;
Brunak, S .
IMMUNOGENETICS, 2004, 55 (12) :797-810
[3]   Modeling the adaptive immune system: predictions and simulations [J].
Lundegaard, Claus ;
Lund, Ole ;
Kesmir, Can ;
Brunak, Soren ;
Nielsen, Morten .
BIOINFORMATICS, 2007, 23 (24) :3265-3275
[4]   A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus [J].
Moutaftsi, Magdalini ;
Peters, Bjoern ;
Pasquetto, Valerie ;
Tscharke, David C. ;
Sidney, John ;
Bui, Huynh-Hoa ;
Grey, Howard ;
Sette, Alessandro .
NATURE BIOTECHNOLOGY, 2006, 24 (07) :817-819
[5]   Reliable prediction of T-cell epitopes using neural networks with novel sequence representations [J].
Nielsen, M ;
Lundegaard, C ;
Worning, P ;
Lauemoller, SL ;
Lamberth, K ;
Buus, S ;
Brunak, S ;
Lund, O .
PROTEIN SCIENCE, 2003, 12 (05) :1007-1017
[6]   A community resource benchmarking predictions of peptide binding to MHC-I molecules [J].
Peters, Bjoern ;
Bui, Huynh-Hoa ;
Frankild, Sune ;
Nielsen, Morten ;
Lundegaard, Claus ;
Kostem, Emrah ;
Basch, Derek ;
Lamberth, Kasper ;
Harndahl, Mikkel ;
Fleri, Ward ;
Wilson, Stephen S. ;
Sidney, John ;
Lund, Ole ;
Buus, Soren ;
Sette, Alessandro .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (06) :574-584
[7]   SYFPEITHI: database for MHC ligands and peptide motifs [J].
Rammensee, HG ;
Bachmann, J ;
Emmerich, NPN ;
Bachor, OA ;
Stevanovic, S .
IMMUNOGENETICS, 1999, 50 (3-4) :213-219
[8]   HLA supertypes and supermotifs: a functional perspective on HLA polymorphism [J].
Sette, A ;
Sidney, J .
CURRENT OPINION IN IMMUNOLOGY, 1998, 10 (04) :478-482
[9]  
Sette Alessandro, 2005, Immunity, V22, P155, DOI 10.1016/j.immuni.2005.01.009
[10]   Methods for prediction of peptide binding to MHC molecules:: A comparative study [J].
Yu, K ;
Petrovsky, N ;
Schönbach, C ;
Koh, JLY ;
Brusic, V .
MOLECULAR MEDICINE, 2002, 8 (03) :137-148