The glycylcyclines - A comparative review with the tetracyclines

被引:208
作者
Zhanel, GG
Homenuik, K
Nichol, K
Noreddin, A
Vercaigne, L
Embil, J
Gin, A
Karlowsky, JA
Hoban, DJ
机构
[1] Univ Manitoba, Fac Med, Dept Med Microbiol, Winnipeg, MB, Canada
[2] Univ Manitoba, Fac Pharm, Winnipeg, MB R3T 2N2, Canada
[3] Focus Technol, Herndon, VA USA
[4] Hlth Sci Ctr, Dept Med, Winnipeg, MB R3A 1R9, Canada
关键词
D O I
10.2165/00003495-200464010-00005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The tetracycline class of antimicrobials exhibit a broad-spectrum of activity against numerous pathogens, including Gram-positive and Gram-negative bacteria, as well as atypical organisms. These compounds are bacteriostatic, and act by binding to the bacterial 30S ribosomal subunit and inhibiting protein synthesis. The tetracyclines have been used successfully for the treatment of a variety of infectious diseases including community-acquired respiratory tract infections and sexually transmitted diseases, as well in the management of acne. The use of tetracyclines for treating bacterial infections has been limited in recent years because of the emergence of resistant organisms with efflux and ribosomal protection mechanisms of resistance. Research to find tetracycline analogues that circumvented these resistance mechanisms has lead to the development of the glycylcyclines. The most developed glycylcycline is the 9-tert-butyl-glycylamido derivative of minocycline, otherwise known as tigecycline (GAR-936). The glycylcyclines exhibit antibacterial activities typical of earlier tetracyclines, but with more potent activity against tetracycline-resistant organisms with efflux and ribosomal protection mechanisms of resistance. The glycylcyclines are active against other resistant pathogens including methicillin-resistant staphylococci, penicillin-resistant Streptococcus pneumoniae, and vancomycin-resistant enterococci. Tigecycline is only available in an injectable formulation for clinical use unlike currently marketed tetracyclines that are available in oral dosage forms. Tigecycline has a significantly larger volume of distribution (>10 L/kg) than the other tetracyclines (range of 0.14 to 1.6 L/kg). Protein binding is approximately 68%. Presently no human data are available describing the tissue penetration of tigecycline, although studies in rats using radiolabelled tigecycline demonstrated good penetration into tissues. Tigecycline has a half-life of 36 hours in humans, less than 15% of tigecycline is excreted unchanged in the urine. On the basis of available data, it does not appear that the pharmacokinetics of tigecycline are markedly influenced by patient gender or age. The pharmacodynamic parameter that best correlates with bacteriological eradication is time above minimum inhibitory concentration. Several animal studies have been published describing the efficacy of tigecycline. Human phase 1 and 2 clinical trials have been completed for tigecycline. Phase 2 studies have been conducted in patients with complicated skin and skin structure infections, and in patients with complicated intra-abdominal infections have been published as abstracts. Both studies concluded that tigecycline was efficacious and well tolerated. Few human data are available regarding the adverse effects or drug interactions resulting from tigecycline therapy; however, preliminary data report that tigecycline can be safely used, is well tolerated and that the adverse effects experienced were typical of the tetracyclines (i.e. nausea, vomiting and headache). Tigecycline appears to be a promising new antibacterial based on in vitro and pharmacokinetic/pharmacodynamic activity; however more clinical data are needed to fully evaluate its potential.
引用
收藏
页码:63 / 88
页数:26
相关论文
共 91 条
  • [81] IN-VITRO AND IN-VIVO ANTIBACTERIAL ACTIVITIES OF THE GLYCYLCYCLINES, A NEW CLASS OF SEMISYNTHETIC TETRACYCLINES
    TESTA, RT
    PETERSEN, PJ
    JACOBUS, NV
    SUM, PE
    LEE, VJ
    TALLY, FP
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1993, 37 (11) : 2270 - 2277
  • [82] TOMBS NL, 1999, 39 INT C ANT AG CHEM
  • [83] Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines
    Tuckman, M
    Petersen, PJ
    Projan, SJ
    [J]. MICROBIAL DRUG RESISTANCE-MECHANISMS EPIDEMIOLOGY AND DISEASE, 2000, 6 (04): : 277 - 282
  • [84] In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria
    van Ogtrop, ML
    Andes, D
    Stamstad, TJ
    Conklin, B
    Weiss, WJ
    Craig, WA
    Vesga, O
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (04) : 943 - 949
  • [85] VERDERAME M, 1986, CRC HDB CHEMOTHERAPE, V1
  • [86] KINETICS OF ANTIMICROBIAL ACTIVITY
    VOGELMAN, B
    CRAIG, WA
    [J]. JOURNAL OF PEDIATRICS, 1986, 108 (05) : 835 - 840
  • [87] IN-VITRO ACTIVITIES OF 2 NEW GLYCYLCYCLINES, N,N-DIMETHYLGLYCYLAMIDO DERIVATIVES OF MINOCYCLINE AND 6-DEMETHYL-6-DEOXYTETRACYCLINE, AGAINST 339 STRAINS OF ANAEROBIC-BACTERIA
    WEXLER, HM
    MOLITORIS, E
    FINEGOLD, SM
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (10) : 2513 - 2515
  • [88] SUSCEPTIBILITIES OF NEISSERIA-GONORRHOEAE TO THE GLYCYLCYCLINES
    WHITTINGTON, WL
    ROBERTS, MC
    HALE, J
    HOLMES, KK
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (08) : 1864 - 1865
  • [89] WILLIAMS DN, 1992, INFECT DIS, P227
  • [90] IN-VITRO ACTIVITIES OF 2 GLYCYLCYCLINES
    WISE, R
    ANDREWS, JM
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (05) : 1096 - 1102