On the calculation of Misiurewicz patterns in one-dimensional quadratic maps

被引:20
作者
Pastor, G
Romera, M
Montoya, F
机构
[1] Instituto de Física Aplicada, Consejo Sup. de Invest. Cie., 28006 Madrid
来源
PHYSICA A | 1996年 / 232卷 / 1-2期
关键词
D O I
10.1016/0378-4371(96)00128-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we give for the first time a table with all Misiurewicz points M(n,p) for low values of the preperiod and period (2 less than or equal to n less than or equal to 8, 1 less than or equal to p less than or equal to 5) in one-dimensional quadratic maps. In the particular case of M(n,1) (important Misiurewicz points which are all placed in the period-1 chaotic band) the preperiod values are (2 less than or equal to n less than or equal to 11). A brute-force algorithm to obtain all the symbolic sequences (patterns) of the M(n,p) and a more efficient algorithm to obtain the patterns of M(g,1) are also shown.
引用
收藏
页码:536 / 553
页数:18
相关论文
共 18 条
[1]  
DOUADY A, 1984, PUBL MATH ORSAY, V8402
[2]  
DOUADY A, 1985, PUBL MATH ORSAY, V8502
[3]  
GROSSMANN S, 1977, Z NATURFORSCH A, V32, P1353
[4]   CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS [J].
HAO, BL ;
XIE, FG .
PHYSICA A, 1993, 194 (1-4) :77-85
[5]   COUNTING STABLE CYCLES IN UNIMODAL ITERATIONS [J].
LUTZKY, M .
PHYSICS LETTERS A, 1988, 131 (4-5) :248-250
[6]   COUNTING HYPERBOLIC COMPONENTS OF THE MANDELBROT SET [J].
LUTZKY, M .
PHYSICS LETTERS A, 1993, 177 (4-5) :338-340
[7]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[8]  
Metropolis N., 1973, Journal of Combinatorial Theory, Series A, V15, P25, DOI 10.1016/0097-3165(73)90033-2
[9]  
MISIUREWICZ M, 1991, MEM AM MATH SOC, V94
[10]   An approach to the ordering of one-dimensional quadratic maps [J].
Pastor, G ;
Romera, M ;
Montoya, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (04) :565-584