Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities

被引:84
作者
Gallo, P. [1 ]
Felici, M. [1 ]
Dwir, B. [1 ]
Atlasov, K. A. [1 ]
Karlsson, K. F. [1 ]
Rudra, A. [1 ]
Mohan, A. [1 ]
Biasiol, G. [2 ]
Sorba, L. [3 ,4 ]
Kapon, E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[2] CNR, INFM, Lab Nazl TASC, I-34012 Trieste, Italy
[3] CNR, INFM, NEST, I-56126 Pisa, Italy
[4] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
D O I
10.1063/1.2952278
中图分类号
O59 [应用物理学];
学科分类号
摘要
The authors demonstrate the deterministic coupling between a single, site-controlled InGaAs/GaAs pyramidal quantum dot (QD) and a photonic crystal membrane cavity defect. The growth of self-ordered pyramidal QDs in small (300 nm base side) tetrahedral recesses etched on (111)B GaAs substrates was developed in order to allow their integration within the thin GaAs membranes. Accurate (better than 50 nm) positioning of the QD with respect to the optical cavity mode is achieved reproducibly owing to the site control. Coupling of the dot emission with the cavity mode is evidenced in photoluminescence measurements. The deterministic positioning of the pyramidal QDs and the control of their emission spectrum opens the way for devices based on QDs integrated with coupled nanocavities. (c) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 22 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity [J].
Atlasov, K. A. ;
Karlsson, K. F. ;
Deichsel, E. ;
Rudra, A. ;
Dwir, B. ;
Kapon, E. .
APPLIED PHYSICS LETTERS, 2007, 90 (15)
[3]   Single photon emission from site-controlled pyramidal quantum dots [J].
Baier, MH ;
Pelucchi, E ;
Kapon, E ;
Varoutsis, S ;
Gallart, M ;
Robert-Philip, I ;
Abram, I .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :648-650
[4]   Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces [J].
Biasiol, G ;
Kapon, E .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :2962-2965
[5]   UNPINNED GALLIUM OXIDE GAAS INTERFACE BY HYDROGEN AND NITROGEN SURFACE PLASMA TREATMENT [J].
CALLEGARI, A ;
HOH, PD ;
BUCHANAN, DA ;
LACEY, D .
APPLIED PHYSICS LETTERS, 1989, 54 (04) :332-334
[6]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[7]   Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities [J].
Gevaux, DG ;
Bennett, AJ ;
Stevenson, RM ;
Shields, AJ ;
Atkinson, P ;
Griffiths, J ;
Anderson, D ;
Jones, GAC ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[8]   Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation [J].
Guo, WH ;
Li, WJ ;
Huang, YZ .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (05) :223-225
[9]   Quantum nature of a strongly coupled single quantum dot-cavity system [J].
Hennessy, K. ;
Badolato, A. ;
Winger, M. ;
Gerace, D. ;
Atatuere, M. ;
Gulde, S. ;
Faelt, S. ;
Hu, E. L. ;
Imamoglu, A. .
NATURE, 2007, 445 (7130) :896-899
[10]   Optical polarization anisotropy and hole states in pyramidal quantum dots [J].
Karlsson, K. F. ;
Troncale, V. ;
Oberli, D. Y. ;
Malko, A. ;
Pelucchi, E. ;
Rudra, A. ;
Kapon, E. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)