Fidelity balance in quantum operations

被引:148
作者
Banaszek, K
机构
[1] Univ Rochester, Ctr Quantum Informat, Rochester, NY 14627 USA
[2] Univ Rochester, Rochester Theory Ctr Opt Sci & Engn, Rochester, NY 14627 USA
[3] Warsaw Univ, Inst Fizyki Teoretycznej, PL-00681 Warsaw, Poland
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.86.1366
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I derive a tight bound between the quality of estimating the state of a single copy of a tl-level system, and the degree the initial state has to be altered in the course of this procedure. This result provides a complete analytical description of the quantum mechanical trade-off between the information gain and the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this bound for quantum teleportation using nonmaximally entangled states.
引用
收藏
页码:1366 / 1369
页数:4
相关论文
共 18 条
[1]   Optimal generalized quantum measurements for arbitrary spin systems -: art. no. 022113 [J].
Acín, A ;
Latorre, JI ;
Pascual, P .
PHYSICAL REVIEW A, 2000, 61 (02) :7
[2]  
Atkinson KE, 1978, An introduction to numerical analysis
[3]   Optimal quantum teleportation with an arbitrary pure state [J].
Banaszek, K .
PHYSICAL REVIEW A, 2000, 62 (02) :4
[4]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[5]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[6]   Security of quantum cryptography against collective attacks [J].
Biham, E ;
Mor, T .
PHYSICAL REVIEW LETTERS, 1997, 78 (11) :2256-2259
[7]   Optimal state estimation for d-dimensional quantum systems [J].
Bruss, D ;
Macchiavello, C .
PHYSICS LETTERS A, 1999, 253 (5-6) :249-251
[8]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[9]   EAVESDROPPING ON QUANTUM-CRYPTOGRAPHICAL SYSTEMS [J].
EKERT, AK ;
HUTTNER, B ;
PALMA, GM ;
PERES, A .
PHYSICAL REVIEW A, 1994, 50 (02) :1047-1056
[10]   Quantum-state disturbance versus information gain: Uncertainty relations for quantum information [J].
Fuchs, CA ;
Peres, A .
PHYSICAL REVIEW A, 1996, 53 (04) :2038-2045