Contactless Electrical Sintering of Silver Nanoparticles on Flexible Substrates

被引:67
作者
Allen, Mark [1 ,2 ]
Alastalo, Ari [1 ]
Suhonen, Mika [1 ]
Mattila, Tomi [1 ]
Leppaniemi, Jaakko [1 ]
Seppa, Heikki [3 ]
机构
[1] VTT Tech Res Ctr Finland, Printed Funct Solut Ctr, Espoo 02044, Finland
[2] Aalto Univ, Dept Radio Sci & Engn, Espoo 02044, Finland
[3] VTT Tech Res Ctr Finland, Sensors & Wireless Devices Ctr, Espoo 02044, Finland
关键词
Flexible substrate; impedance matching; inkjet printing; nanoparticle ink; near-field coupling; rapid electrical sintering (RES);
D O I
10.1109/TMTT.2011.2123910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Contactless rapid electrical sintering (RES) is demonstrated using microwave power. The method is implemented by coupling the near-field electric field of a sintering head across an underlying nanoparticle layer. We provide appropriate biasing conditions required for controlled power delivery and demonstrate real-time monitoring of the process by measuring the reflected power at 1.8 GHz. A small-scale sintering head is designed and fabricated on a printed circuit board (PCB). The PCB head is shown to provide a tenfold improvement in sintering efficiency when compared to a sintering head with a less focused electric field pattern. Finally, a high-power coaxial sintering head, with a narrow electrode spacing and biasing conditions similar to the PCB head, is used for demonstrating contactless RES over an air gap. Silver nanoparticle patterning inkjet printed on a temperature-sensitive flexible substrate is efficiently sintered in two passes with 50-W input power and 25-mm/s processing speed, when the vertical working distance to the constantly moving substrate is 1 mm. The demonstrated sintering technology can be applied to a number of printed electronics applications.
引用
收藏
页码:1419 / 1429
页数:11
相关论文
共 20 条
[1]  
ALASTALO AT, 2009, P MAT RES SOC S
[2]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[3]   Applicability of Metallic Nanoparticle Inks in RFID Applications [J].
Allen, Mark L. ;
Jaakkola, Kaarle ;
Nummila, Kaj ;
Seppa, Heikki .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2009, 32 (02) :325-332
[4]   Area-scaling of organic solar cells [J].
Choi, Seungkeun ;
Potscavage, William J., Jr. ;
Kippelen, Bernard .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
[5]   Conductor microstructures by laser curing of printed gold nanoparticle ink [J].
Chung, JW ;
Ko, SW ;
Bieri, NR ;
Grigoropoulos, CP ;
Poulikakos, D .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :801-803
[6]   Highly conductive ink jet printed films of nanosilver particles for printable electronics [J].
Kim, D ;
Moon, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (11) :J30-J33
[7]   Intense pulsed light sintering of copper nanoink for printed electronics [J].
Kim, Hak-Sung ;
Dhage, Sanjay R. ;
Shim, Dong-Eun ;
Hahn, H. Thomas .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 97 (04) :791-798
[8]   Gravure printed organic light emitting diodes for lighting applications [J].
Kopola, P. ;
Tuomikoski, M. ;
Suhonen, R. ;
Maaninen, A. .
THIN SOLID FILMS, 2009, 517 (19) :5757-5762
[9]   Crack formation and substrate effects on electrical resistivity of inkjet-printed Ag lines [J].
Lee, Dong Jun ;
Oh, Je Hoon ;
Bae, Han Seung .
MATERIALS LETTERS, 2010, 64 (09) :1069-1072
[10]   Printed WORM Memory on a Flexible Substrate Based on Rapid Electrical Sintering of Nanoparticles [J].
Leppaniemi, Jaakko ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Allen, Mark ;
Seppa, Heikki .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (01) :151-159