Creeping baselines and adaptive resistance to antibiotics

被引:162
作者
Fernandez, Lucia [1 ]
Breidenstein, Elena B. M. [1 ]
Hancock, Robert E. W. [1 ]
机构
[1] Univ British Columbia, Ctr Microbial Dis & Immun Res, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada
关键词
Antibiotics; Adaptive resistance; Baseline MIC creep; 2-COMPONENT REGULATORY SYSTEM; PSEUDOMONAS-AERUGINOSA BIOFILMS; CATIONIC ANTIMICROBIAL PEPTIDES; BETA-LACTAMASE INDUCTION; IN-VITRO ACTIVITY; ESCHERICHIA-COLI; CYSTIC-FIBROSIS; STAPHYLOCOCCUS-AUREUS; POLYMYXIN-B; AMINOGLYCOSIDE-RESISTANCE;
D O I
10.1016/j.drup.2011.01.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The introduction of antimicrobial drugs in medicine gave hope for a future in which all infectious diseases could be controlled. Decades later it appears certain this will not be the case, because antibiotic resistance is growing relentlessly. Bacteria possess an extraordinary ability to adapt to environmental challenges like antimicrobials by both genetic and phenotypic means, which contributes to their evolutionary success. It is becoming increasingly appreciated that adaptation is a major mechanism behind the acquisition and evolution of antibiotic resistance. Adaptive resistance is a specific class of non-mutational resistance that is characterized by its transient nature. It occurs in response to certain environmental conditions or due to epigenetic phenomena like persistence. We propose that this type of resistance could be the key to understanding the failure of some antibiotic therapy programs, although adaptive resistance mechanisms are still somewhat unexplored. Similarly, hard wiring of some of the changes involved in adaptive resistance might explain the phenomenon of "baseline creep" whereby the average minimal inhibitory concentration (MIC) of a given medically important bacterial species increases steadily but inexorably over time, making the likelihood of breakthrough resistance greater. This review summarizes the available information on adaptive resistance. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 262 条
[21]   Pseudomonas aeruginosa Biofilms in the Respiratory Tract of Cystic Fibrosis Patients [J].
Bjarnsholt, Thomas ;
Jensen, Peter Ostrup ;
Fiandaca, Mark J. ;
Pedersen, Jette ;
Hansen, Christine Ronne ;
Andersen, Claus Bogelund ;
Pressler, Tacjana ;
Givskov, Michael ;
Hoiby, Niels .
PEDIATRIC PULMONOLOGY, 2009, 44 (06) :547-558
[22]   COMPARATIVE-STUDY WITH ENOXACIN AND NETILMICIN IN A PHARMACODYNAMIC MODEL TO DETERMINE IMPORTANCE OF RATIO OF ANTIBIOTIC PEAK CONCENTRATION TO MIC FOR BACTERICIDAL ACTIVITY AND EMERGENCE OF RESISTANCE [J].
BLASER, J ;
STONE, BB ;
GRONER, MC ;
ZINNER, SH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1987, 31 (07) :1054-1060
[23]   PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa [J].
Blazquez, Jesus ;
Gomez-Gomez, Jose-Maria ;
Oliver, Antonio ;
Juan, Carlos ;
Kapur, Vivek ;
Martin, Soledad .
MOLECULAR MICROBIOLOGY, 2006, 62 (01) :84-99
[24]   Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms [J].
Borriello, G ;
Werner, E ;
Roe, F ;
Kim, AM ;
Ehrlich, GD ;
Stewart, PS .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (07) :2659-2664
[25]   Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents [J].
Braoudaki, M ;
Hilton, AC .
JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (01) :73-78
[26]   Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa [J].
Brazas, MD ;
Hancock, REW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2005, 49 (08) :3222-3227
[27]   Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance [J].
Brazas, MD ;
Hancock, REW .
DRUG DISCOVERY TODAY, 2005, 10 (18) :1245-1252
[28]   Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin [J].
Brazas, Michelle D. ;
Breidenstein, Elena B. A. ;
Overhage, Joerg ;
Hancock, Robert E. W. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (12) :4276-4283
[29]   Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility [J].
Breidenstein, Elena B. M. ;
Khaira, Bhavjinder K. ;
Wiegand, Irith ;
Overhage, Joerg ;
Hancock, Robert E. W. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2008, 52 (12) :4486-4491
[30]   RESISTANCE OF BACTERIAL BIOFILMS TO ANTIBIOTICS - A GROWTH-RATE RELATED EFFECT [J].
BROWN, MRW ;
ALLISON, DG ;
GILBERT, P .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1988, 22 (06) :777-780