Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes

被引:310
作者
Amstad, Esther [1 ]
Kohlbrecher, Joachim [2 ]
Mueller, Elisabeth [3 ]
Schweizer, Thomas [4 ]
Textor, Marcus [1 ]
Reimhult, Erik [1 ,5 ]
机构
[1] ETH, Surface Sci & Technol Lab, CH-8093 Zurich, Switzerland
[2] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland
[3] EMEZ, CH-8093 Zurich, Switzerland
[4] ETH, Dept Mat, CH-8093 Zurich, Switzerland
[5] Univ Nat Resources & Life Sci BOKU, Dept Nanobiotechnol, A-1190 Vienna, Austria
关键词
Stealth liposorne; superparamagnetic iron oxide nanopartide; triggered release; drug delivery vehicle; nanoreactor; palmityl-nitroDOPA; TEMPERATURE; MAGNETOLIPOSOMES; NANOCONTAINERS; DESIGN; SYSTEM; TUMOR;
D O I
10.1021/nl2001499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ideal nanoscale drug delivery vehicle allows control over the released dose in space and time We demonstrate that this can be achieved by stealth liposomes comprising self assembled superpararnagnetic iron oxide nanoparticles (NPs) individually stabilized with palmityl-nitroDOPA incorporated in the lipid membrane. Alternating magnetic fields were used to control timing and dose of repeatedly released cargo from such vesicles by locally heating the membrane, which changed its permeability without major effects on the environment.
引用
收藏
页码:1664 / 1670
页数:7
相关论文
共 36 条
[1]   Influence of Electronegative Substituents on the Binding Affinity of Catechol-Derived Anchors to Fe3O4 Nanoparticles [J].
Amstad, Esther ;
Gehring, Andreas U. ;
Fischer, Hakon ;
Nagaiyanallur, Venkatamaran V. ;
Haehner, Georg ;
Textor, Marcus ;
Reimhult, Erik .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (03) :683-691
[2]   Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups [J].
Amstad, Esther ;
Gillich, Torben ;
Bilecka, Idalia ;
Textor, Marcus ;
Reimhult, Erik .
NANO LETTERS, 2009, 9 (12) :4042-4048
[3]   AC-magnetic field controlled drug release from magnetoliposomes:: design of a method for site-specific chemotherapy [J].
Babincová, M ;
Cicmanec, P ;
Altanerová, V ;
Altaner, C ;
Babinec, P .
BIOELECTROCHEMISTRY, 2002, 55 (1-2) :17-19
[4]   Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes:: a small-angle neutron scattering study [J].
Balgavy, P ;
Dubnicková, M ;
Kucerka, N ;
Kiselev, MA ;
Yaradaikin, SP ;
Uhriková, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1512 (01) :40-52
[5]   Guiding the location of nanoparticles into vesicular structures: a morphological study [J].
Binder, Wolfgang H. ;
Sachsenhofer, Robert ;
Farnik, Dominique ;
Blaas, Dieter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (48) :6435-6441
[6]   An integrated self-assembled nanofluidic system for controlled biological chemistries [J].
Bolinger, Pierre-Yves ;
Stamou, Dimitrios ;
Vogel, Horst .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5544-5549
[7]   Hepatoma Cell Uptake of Cationic Multifluorescent Quantum Dot Liposomes [J].
Bothun, Geoffrey D. ;
Rabideau, Amy E. ;
Stoner, Matthew A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (22) :7725-7728
[8]   Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties [J].
Bothun G.D. .
Journal of Nanobiotechnology, 2008, 6 (1)
[9]   Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating [J].
Chen, Yanjing ;
Bose, Arijit ;
Bothun, Geoffrey D. .
ACS NANO, 2010, 4 (06) :3215-3221
[10]   Modeling the thermodynamics of the interaction of nanoparticles with cell membranes [J].
Ginzburg, Valedy V. ;
Balijepailli, Sudhakar .
NANO LETTERS, 2007, 7 (12) :3716-3722