Rare variant association studies: considerations, challenges and opportunities

被引:154
作者
Auer, Paul L. [1 ]
Lettre, Guillaume [2 ,3 ]
机构
[1] Univ Wisconsin, Sch Publ Hlth, Milwaukee, WI 53201 USA
[2] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada
[3] Univ Montreal, Montreal, PQ H1T 1C8, Canada
来源
GENOME MEDICINE | 2015年 / 7卷
基金
加拿大健康研究院;
关键词
FREQUENCY CODING VARIANTS; GENOME-WIDE ASSOCIATION; SEQUENCE VARIANTS; MISSING HERITABILITY; GENOTYPE IMPUTATION; GENERAL FRAMEWORK; AFRICAN-AMERICANS; COMMON VARIANTS; COMPLEX DISEASE; CANDIDATE GENES;
D O I
10.1186/s13073-015-0138-2
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWASs) have successfully uncovered thousands of robust associations between common variants and complex traits and diseases. Despite these successes, much of the heritability of these traits remains unexplained. Because low-frequency and rare variants are not tagged by conventional genome-wide genotyping arrays, they may represent an important and understudied component of complex trait genetics. In contrast to common variant GWASs, there are many different types of study designs, assays and analytic techniques that can be utilized for rare variant association studies (RVASs). In this review, we briefly present the different technologies available to identify rare genetic variants, including novel exome arrays. We also compare the different study designs for RVASs and argue that the best design will likely be phenotype-dependent. We discuss the main analytical issues relevant to RVASs, including the different statistical methods that can be used to test genetic associations with rare variants and the various bioinformatic approaches to predicting in silico biological functions for variants. Finally, we describe recent rare variant association findings, highlighting the unexpected conclusion that most rare variants have modest-to-small effect sizes on phenotypic variation. This observation has major implications for our understanding of the genetic architecture of complex traits in the context of the unexplained heritability challenge.
引用
收藏
页数:11
相关论文
共 107 条
[51]   Most rare missense alleles are deleterious in humans: Implications for complex disease and association studies [J].
Kryukov, Gregory V. ;
Pennacchio, Len A. ;
Sunyaev, Shamil R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 80 (04) :727-739
[52]   Power of deep, all-exon resequencing for discovery of human trait genes [J].
Kryukov, Gregory V. ;
Shpunt, Alexander ;
Stamatoyannopoulos, John A. ;
Sunyaev, Shamil R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (10) :3871-3876
[53]   Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm [J].
Kumar, Prateek ;
Henikoff, Steven ;
Ng, Pauline C. .
NATURE PROTOCOLS, 2009, 4 (07) :1073-1082
[54]   Family-based designs in the age of large-scale gene-association studies [J].
Laird, NM ;
Lange, C .
NATURE REVIEWS GENETICS, 2006, 7 (05) :385-394
[55]   Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol [J].
Lange, Leslie A. ;
Hu, Youna ;
Zhang, He ;
Xue, Chenyi ;
Schmidt, Ellen M. ;
Tang, Zheng-Zheng ;
Bizon, Chris ;
Lange, Ethan M. ;
Smith, Joshua D. ;
Turner, Emily H. ;
Jun, Goo ;
Kang, Hyun Min ;
Peloso, Gina ;
Auer, Paul ;
Li, Kuo-Ping ;
Flannick, Jason ;
Zhang, Ji ;
Fuchsberger, Christian ;
Gaulton, Kyle ;
Lindgren, Cecilia ;
Locke, Adam ;
Manning, Alisa ;
Sim, Xueling ;
Rivas, Manuel A. ;
Holmen, Oddgeir L. ;
Gottesman, Omri ;
Lu, Yingchang ;
Ruderfer, Douglas ;
Stah, Eli A. ;
Duan, Qing ;
Li, Yun ;
Durda, Peter ;
Jiao, Shuo ;
Isaacs, Aaron ;
Hofman, Albert ;
Bis, Joshua C. ;
Correa, Adolfo ;
Griswold, Michael E. ;
Jakobsdottir, Johanna ;
Smith, Albert V. ;
Schreiner, Pamela J. ;
Feitosa, Mary E. ;
Zhang, Qunyuan ;
Huffman, Jennifer E. ;
Crosby, Jacy ;
Wasse, Christina L. ;
Do, Ron ;
Franceschini, Nora ;
Martin, Lisa W. ;
Robinson, Jennifer G. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 94 (02) :233-245
[56]   General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies [J].
Lee, Seunggeun ;
Teslovich, Tanya M. ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) :42-53
[57]   Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies [J].
Lee, Seunggeun ;
Emond, Mary J. ;
Bamshad, Michael J. ;
Barnes, Kathleen C. ;
Rieder, Mark J. ;
Nickerson, Deborah A. ;
Christiani, David C. ;
Wurfel, Mark M. ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (02) :224-237
[58]   Rare-Variant Association Analysis: Study Designs and Statistical Tests [J].
Lee, Seunggeung ;
Abecasis, Goncalo R. ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 95 (01) :5-23
[59]  
LevyLahad E, 1997, AM J HUM GENET, V60, P1059
[60]   Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data [J].
Li, Bingshan ;
Leal, Suzanne M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (03) :311-321