Entangled rings

被引:354
作者
O'Connor, KM [1 ]
Wootters, WK [1 ]
机构
[1] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevA.63.052302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider a ring of N qubits in a translationally invariant quantum state. We ask to what extent each pair. of nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entanglement achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2 particles. We find that, though the antiferromagnetic ground state typically does not maximize the nearest-neighbor entanglement relative to all other states, it does so relative to other states having zero z component of spin.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Quantum to classical phase transition in noisy quantum computers [J].
Aharonov, D .
PHYSICAL REVIEW A, 2000, 62 (06) :062311-062311
[2]  
Arnesen M. C., QUANTPH0009060
[3]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[4]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[9]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[10]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226